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In spin-echo-based EPR oximetry, traditional methods to estimate the T2 relaxation time, which encodes
the oxygen concentration of the sample, include fitting an exponential to the peaks or the integrated
areas of multiple noisy echoes. These methods are suboptimal and result in a loss of estimation precision
for a given acquisition time. Here, we present the maximum likelihood estimate (MLE) of T2 from spin-
echo data. The MLE provides, for the data considered, approximately 3-fold time savings over echo-inte-
gration and more than 40-fold time savings over peak-picking. A one-dimensional line search results in
simple computation of the MLE. It is observed that, perhaps counter-intuitively, prior knowledge of the
lineshape does not yield additional reduction of estimation error variance at practical noise levels. The
result also illuminates the near optimal performance of T2 estimation via principal components calcu-
lated by a singular value decomposition. The proposed method is illustrated by application to simulated
and experimental EPR data.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Electron paramagnetic resonance (EPR) is a spectroscopic meth-
od capable of detecting and quantifying free radicals. Over the past
several decades, EPR has found numerous applications in biology,
chemistry, physics, and medicine [1]. Among in vivo applications
of EPR, oximetry has been arguably the most active topic of re-
search, with emphasis on quantitative assessment of tumor hypox-
ia [2,3].

Continuous wave (CW) EPR and pulsed EPR are competing yet
often complementary modes of data acquisition. At present, CW
EPR remains the most widespread technique for in vivo oximetry
[4] because of its simple equipment design and ability to utilize
a wide variety of oxygen sensitive spin probes. However, the data
acquisition in CW EPR is generally slow, resulting in long acquisi-
tion times. One way to accelerate data acquisition is to use pulsed
EPR methods. With recent technological advances and the develop-
ment of EPR oximetry probes with narrow linewidth, pulsed EPR
oximetry has become an attractive option, especially for studying
tumor hypoxia [5].

The early pulsed EPR oximetry experiments measured the
decaying signal, called free induction decay (FID), after the applica-
tion of a p/2 pulse [6]. To calculate the transverse relaxation time,
the measured FID is fitted with an exponential. For FID-based
imaging, one-dimensional projections are obtained by the Fourier
transformation of the FID signal collected in the presence of fre-
quency encoding gradients [7]. The image is generally obtained
by filtered backprojection of the measured projection data. The
dead-time of EPR spectrometers irreversibly distorts the leading
portion of the FID signal, decreasing the efficiency, especially for
probes with short relaxation times. This limitation of FID-based
EPR oximetry is overcome by the use of spin-echo (SE) acquisition,
which has been used in both spectroscopic and imaging modes [5].
Another alternative approach to EPR oximetric imaging is single
point imaging (SPI)—a pure phase encoding technique—which of-
fers superior spatial resolution albeit at the cost of longer acquisi-
tions [8]. These pulsed EPR methods have been summarized in a
review article by Subramanian et al. [9].

The present work pertains to SE-based spectroscopy with appli-
cation to EPR oximetry. The SE-based EPR oximetry allows direct
measurement of the T2 relaxation time, which can be readily con-
verted to the homogeneous broadening component of the EPR line-
shape. Since the homogeneous broadening is proportional to the
oxygen concentration, broadening can thus be used to estimate
oxygen concentration via a precomputed calibration curve.

In SE-EPR, data are generally collected using the conventional
p/2 � s � p � s echo pulse sequence [10]. Since the echo ampli-
tude decays with exp{�2s/T2}, collecting and processing multiple
echoes with different s values enables estimation of T2. The
traditional methods of processing SE-EPR data include fitting an
exponential to echo peaks (peak-picking) or echo areas (echo-
integration). The peak-picking method is inefficient because it only
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uses one data point from each echo, and echo-integration is like-
wise inefficient because it does not distinguish between high-
SNR and low-SNR samples in an echo.

Here, we present a maximum likelihood estimator of the T2

relaxation time. The estimator achieves the Cramér-Rao lower
bound (CRLB) on estimation error variance at experimentally rele-
vant noise levels. The precision of the estimate allows for approx-
imately 3 times acceleration of data acquisition over the echo-
integration method, and over 40 times acceleration versus peak-
peaking. Interestingly, knowledge of the lineshape does not pro-
vide improvement in precision of T2 estimates.

2. Theory

The purpose of data acquisition and processing is to produce an
estimate of the T2 relaxation time. In this section, we first review
the peak-picking and echo-integration estimators. Then, we pres-
ent and analyze the maximum likelihood estimator.

2.1. Peak-picking and echo integration

In the peak-picking method (e.g., [7,11]), the estimate of T2 is
determined by a least-squares fit of an exponential to high-ampli-
tude samples taken from N measured echoes:

bT 2;pp ¼ arg
T2

min
T2 ;a

XN

k¼1

jsk � a expð�2sk=T2Þj2; ð1Þ

where sk is the sample from the kth echo taken at a fixed position
common to all echoes, a is an unknown scaling, and 2sk is the echo
time for the kth pulse. For complex-valued spectra, sk and a in (1)
are complex-valued numbers.

In the echo-integration method (e.g., [11,12]), each echo is inte-
grated before fitting a decaying exponential. Thus, the estimated
relaxation time is

bT 2;ei ¼ arg
T2

min
T2 ;a

XN

k¼1

j�yk � a expð�2sk=T2Þj2; ð2Þ

where, for real-valued spectra, �yk is the sum of the M equi-spaced
sampled values for the kth echo. For complex-valued spectra, a is
complex-valued, and we take �yk to be the complex-valued coeffi-
cient of the most energetic harmonic in the discrete Fourier series
expansion of yk.

2.2. Maximum likelihood estimator

We derive a simple expression for the MLE of the T2 relaxation
time and demonstrate that no assumption is required on the line-
shape. Further, the approach accommodates different amounts of
averaging, and hence effective noise power, at each echo. Consider
a data matrix formed by concatenating each measured echo into a
column of an M � N matrix, Y. An exponential decay of echoes can
be written

Y ¼ afbHðT2Þ þ G; ð3Þ

where Y = [y1,y2, . . . , yN] is an M � N array, a is an unknown global
scaling, f is a length-M list of samples of the echo shape with unit
norm kfk2 = 1, and b(T2) = [exp{�2s1/T2}, . . . , exp{�2sN/T2}]H, is the
exponential decay at N echo times. Here and below, superscript
(�)H denotes the conjugate transpose. The measurement noise ma-
trix G is an M � N array of independent Gaussian random variables
with zero mean and variance wkr2 in column k (variance wkr2/2 in
both real and imaginary parts, in the case of complex-valued spec-
tra). For example, with identical instrument noise at each echo, we
have simply wk = 1/Rk, where Rk is the number of averages used to
form the kth echo. Note that b is real-valued, whereas a, f, and G
can be either real or complex-valued depending on the measured
data Y.

The scale factor, a, the echo shape, f, the noise factor r2, and the
relaxation time, T2, are all unknown; from Y we seek the maxi-
mum-likelihood estimate of T2. The likelihood function is

LðT2Þ ¼ ð2pr2Þ�MN=2jWj�M=2

� exp � 1
2r2 kðY � afbHðT2ÞÞW�1=2k2

F

� �
; ð4Þ

where W = diag{w1, . . . , wN} and k � kF denotes the Frobenius norm
(i.e., square root of sum of squares of entries in the matrix). Hence,
by the monotonicity of the logarithm, the ML estimate isbT 2;ml ¼ arg

T2

min
a;T2 ;f
kðY � afbHðT2ÞÞW�1=2k2

F : ð5Þ

The N-by-N matrix W�1/2 may be interpreted as a whitening filter.
As shown in Appendix A, the optimizing value of T2 in (5) is

bT 2;ml ¼ arg max
T2

bHðT2ÞW�1YHYW�1bðT2Þ
bHðT2ÞW�1bðT2Þ

: ð6Þ

Because b is structured by the parameter T2, a one-dimensional line
search is required to optimize (6) and obtain both the ML estimatebT 2;ml and the associated vector bðbT 2;mlÞ. Similarly, for the case in
which the echo shape is assumed to be known, the MLE becomes

bT 2;ml�f ¼ arg max
T2

bHðT2ÞW�1YHff HYW�1 bðT2Þ
bHðT2ÞW�1bðT2Þ

; ð7Þ

where f is the known echo shape with unit norm. A brief computer
code for (6) and (7) in the Matlab language (Mathworks, Natick,
MA) is available at Matlab Central File Exchange [13].

2.3. Singular value decomposition

Under noiseless ideal conditions, Y is a rank-one matrix, which
motivated us to explore estimation of T2 from the singular value
decomposition (SVD) [14]. The SVD provides the following matrix
decomposition,

Y ¼
XN

r¼1

rrurvH
r ; r1 P r2 P � � �P rN P 0; ð8Þ

where, for M samples per each of N < M echoes, {u1, . . . , uN} are
orthonormal vectors of length M, and {v1, . . . , vN} are orthonormal
vectors of length N. Under the assumption that the noiseless echo
has the same shape for each delay time 2sk, then the noiseless data
matrix must be a rank-one matrix. Accordingly, u1 is the normalized
echo shape, and the N values in v1 are samples of the decay curve, in
the noiseless case.

If b were unstructured, rather than an exponential decay, then
in noise the likelihood maximizing value for b (up to scale) in (6)
would be given by the eigenvector corresponding to the largest
eigenvalue of YHY. Note, the latter is equivalent to the principal
right singular vector, v1, of Y.

It is interesting to consider how the solution to (6) compares to
an SVD-based estimator of T2; in Appendix B, we establish the
equality

bT 2;svd ¼ arg
T2

min
T2 ;a

XN

k¼1

Yk � au1 expð�2sk=T2Þk k2

¼ arg max
T2

bHðT2Þv1vH
1 bðT2Þ

bHðT2ÞbðT2Þ
: ð9Þ

Hence, we find that when Y is truly rank-one (that is, in the noise-
less case), the MLE and SVD-based estimators coincide:
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bT 2;svd ¼ bT 2;ml. In noise, the SVD estimator, while suboptimal and
computationally more expensive than the MLE, can offer near-opti-
mal performance for the case of equal noise variance in each re-
corded echo.

3. Materials and methods

3.1. Simulation

For a controlled numerical experiment, EPR spin echo data were
simulated in Matlab (Mathworks, Natick, MA) using random
additive noise. The signal was modeled using real-valued Gaussian
echoes, yielding

Y0ðt; kÞ ¼ a expf�ðt �mÞ2=vg expf�2sk=T2g;
t ¼ 1; . . . ;256; k ¼ 1; . . . ;7; ð10Þ

where m = 100, v = 1245, and T2 = 418 ns; 256 uniformly-spaced
time samples were generated at a 1 ns spacing. The parameters
were selected to mimic experimental data from activated charcoal
(data not presented) [15].

The seven echo times, 2s, were 400 to 880 ns in uniform incre-
ments of 80 ns. The seven simulated echoes were used to form a
noiseless 256 � 7 data array, Y0. For 10,000 Monte Carlo trials,
pseudo-random zero-mean Gaussian noise of variance r2 was
added to Y0 to yield a signal-to-noise ratio (SNR) from �10 dB to
30 dB, in increments of 2 dB; accordingly, simulated noise vari-
ances, r2, were given by

SNRðdBÞ ¼ 10log10
kY0k2

F

MNr2 : ð11Þ

Additionally, the Cramér-Rao lower bounds [16,17] were computed
for the estimation error variance on signal models corresponding to
peak-picking, echo-integration, and the non-parametric signal mod-
el of (3). The CRLB gives a lower bound on the variance of any unbi-
ased estimator; a MLE is asymptotically a statistically efficient
estimator, and thus achieves this bound at sufficiently high signal
to noise ratio (SNR). We note that the CRLB, which is essentially a
high-SNR analysis, yields identical lower bounds for three cases:
unknown echo shape, parametric echo shape with unknown param-
eters (e.g., Gaussian pulse with unknown width and shift), and
known echo shape with unknown amplitude.

3.2. Experimental data

Finland D36 trityl [18] under anoxic conditions at 1 mM con-
centration was used to collect spin-echo data on a home made
wide band pulsed EPR spectrometer [19] operated at 9.5 GHz.
Other parameters used were: Hahn echo sequence with 35 ns p/2
pulse and 80 ns p pulse; 8-step phase cycle (CYCLOPS and ± on
the first pulse); time domain sampling rate of 500 MHz; and repe-
tition rate of 20 kHz. Sixteen echoes were collected with 2s ranging
from 1600 ns to 10,600 ns, with a constant increment of 600 ns.
Two datasets, one high SNR (25.8 dB) for building the ground truth
and one at low SNR (1 dB) for validation, were collected back to
back. For the high SNR dataset, 24,000 averages were used for
every echo, while only 80 averages per echo were used for the
low SNR dataset. The low SNR acquisition was repeated 18 times
under identical conditions.

4. Results

4.1. Simulation

Fig. 1(a) displays the standard deviation of T2 estimation error
for five estimation methods: peak-picking, echo-integration, SVD,
MLE with known lineshape, and MLE with unknown linshape.
The solid lines depict the optimal performance bounds given by
the square root of the CRLBs, and circles show simulated results
computed from the 10,000 random noise realizations at each
SNR. The estimation bias is the mean of the estimation errors
and is given in Fig. 1(b). Five observations are drawn from the sim-
ulated noise experiments in Fig. 1. First, the standard errors for the
peak-picking and echo-integration, in ratio to the MLE, are

ffiffiffiffiffiffiffiffiffiffi
44:2
p

and
ffiffiffiffiffiffiffiffiffiffi
2:89
p

, respectively. Thus, the simple MLE post-processing
can achieve a desired estimation precision with 2.89 times and
44.2 times shorter acquisition compared to echo-integration and
peak-picking, respectively. Second, the MLE provides low bias esti-
mates at lower SNR than is achieved with either peak-picking or
echo-integration. Third, for SNR values above 0dB, the estimator
error in both bias and standard deviation is essentially identical
for maximum likelihood estimation with and without presumed
knowledge of the echo shape; thus, one should choose to make
inference of T2 agnostic to echo shape. Fourth, the SVD-based esti-
mator yields bias and variance essentially identical to the MLE with
unknown lineshape, as predicted in (26). Fifth, the CRLB provides
an accurate analytical prediction of estimation precision for exper-
imentally relevant SNR values—in this case, above 10 dB SNR for
the peak-picking estimator and above 0 dB for the other four esti-
mators considered.

4.2. Experimental data

All four methods—peak-picking, echo-integration, SVD, and
MLE (with unknown lineshape)—generated similar estimates of
T2 from the high SNR dataset: bT 2;p ¼ 6305 ns, bT 2;ei ¼ 6504 ns,bT 2;svd ¼ 6500 ns, and bT 2;ml ¼ 6502 ns. The estimate based on echo
integration was used as the ground truth. Three of the sixteen com-
plex echoes from the high SNR dataset and from one of the low SNR
datasets are shown in Figs. 2 and 3, respectively.

We evaluated the performance of the four estimators by com-
puting T2 estimates for each of the 18 low SNR acquisitions. The
distribution of these estimates is reported in Fig. 4. Compared to
the standard deviation of 239.8 ns for bT 2;ml, the standard deviations
in bT 2;pp; bT 2;ei, and bT 2;svd were observed to be 1912 ns, 447.9 ns, and

241.1 ns, respectively. Assuming std bT 2

� �
/ 1=

ffiffi
t
p

, with t being the

acquisition time, the time savings offered by MLE over peak-pick-
ing and echo-integration were 63.6-fold and 3.49-fold, respec-
tively. Also, compared to the traditional estimators, the bias was

smaller for bT 2;ml and bT 2;svd.

5. Discussion

T2 estimation based on traditional peak-picking or echo-inte-
gration is suboptimal. In a typical spin-echo experiment, the sam-
ples along an echo have varying SNR; the peak has higher SNR
compared to the other samples in the echo. In peak-picking, most
of the collected data are disregarded, resulting in an efficiency loss.
Although the echo-integration method utilizes all the data sam-
ples, it does not take SNR variations into account; high and low
SNR samples are averaged together, resulting in a suboptimal
performance.

In general, the performances of peak-picking and echo-integra-
tion, relative to the MLE, depend on the shape of the echo, making
it difficult to project the exact time-savings offered by MLE for all
possible experimental setups. For the data considered, approxi-
mately 3-fold time savings over echo-integration and more than
40-fold time savings over peak-picking were observed.

Another potential advantage of the MLE and the related statis-
tical sensitivity analysis is their use to optimize data collection to
provide the best precision for a given acquisition time. Previously,
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Fig. 2. Three of the sixteen echoes from the high SNR experimental data are shown.
From top to bottom are the real, imaginary, and absolute values of the measured
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we have employed similar analysis to optimize data collection for
CW EPR [20]. In addition, such analysis can also be used to develop
a relationship between ambient SNR and T2 (or oxygen) measure-
ment precision, albeit only for a given set of experimental param-
eters and probe characteristics.

The proposed estimator is equally applicable to real or com-
plex-valued echoes, and also allows unequal numbers of averages
(SNR) across the echoes. Computationally, the proposed MLE is
fast. For the experimental dataset, the average computation times
for peak-picking, echo-integration, SVD, and MLE were approxi-
mately 70 ms, 50 ms, 125 ms, and 25 ms, respectively. Although
the relative values of these computation times may vary based
on the employed optimization routines, the reliance on one-
dimensional line search will ensure that the MLE computation bur-
den compares favorably against existing methods.

Interestingly, the MLE of T2 is asymptotically agnostic to the
shape of the echo, i.e., knowing the parametric form of the echo
or knowing the echo explicitly does not the change the CRLB (der-
ivation not shown). The Monte Carlo simulation (Fig. 1) agrees
with the theoretical prediction; and, at very low SNR (below
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0 dB) the explicit knowledge of echo shape offers a modest
improvement.

Although it is not the primary focus of this work, the MLE
framework detailed in Appendix A enables estimating the echo
shape as well. In fact, after the MLE of T2 has been computed via
line search, the estimation of the underlying echo shape has a
closed-form solution (Eq. (14), with b constructed from bT 2;ml). Note
that the work presented here is equally applicable to T1-based EPR
oximetry [21].

In the field of NMR or MRI relaxometry, several data process-
ing techniques have been proposed to estimate T2 from spin-
echo data. Although they bear a resemblance to the proposed
MLE method, the estimation of T2 for almost all those tech-
niques relies on fitting a series of measured data samples with
a single or multiple exponential functions [22–24]. The proposed
method offers a departure from the previous work. Here, we
process the entire echo and exploit the redundancy of spin-echo
data. Also, our application of SVD is different. Previously, SVD
has been used to denoise spin-echo based MRI images [25],
while we have used SVD as a means to jointly process data
for T2 estimation.

In addition to being a statistically principled estimation tech-
nique, the proposed MLE can seamlessly accommodate unequal
noise variance across echoes, whereas SVD cannot. However,
application of the MLE method is limited to spin-echo spectros-
copy and cannot be readily extended to imaging. In contrast,
the SVD concepts presented here can be extended to imaging
applications. In SE-based imaging, a series of two- or three-
dimensional images with different delays s between p/2 and p
pulses is acquired, and the intensity decay at every pixel or voxel
is fitted to an exponential function to generate a T2 map. We can
rearrange the imaging data into a 2D matrix Y, such that the pix-
el intensities are along the column-direction and pixel-wise
relaxation rates are along the row-direction. Since the relaxation
rates vary spatially, the matrix Y has rank larger than 1. In this
case, however, SVD can still be applied to denoise images, with
some appropriate choice of truncation of singular values in (8).
Similar denoising approaches have been previously used
[26,25,27]. Finally, the local T2 values can be determined by pix-
el-wise fitting of the denoised image with an exponential func-
tion. This approach can potentially overcome the ‘‘missing
voxel’’ issue encountered in SE-EPR imaging where extremely
poor SNR at a given pixel or voxel results in a meaningless expo-
nential fit [5].
6. Conclusion

The proposed maximum likelihood estimate of the T2 relaxa-
tion time provides significant reduction in standard error—and
hence acquisition time—versus the peak-picking and echo-inte-
gration techniques commonly used in the literature. Further, the
MLE does not benefit from prior knowledge of the true lineshape
at practical noise levels. For the simulated and experimental data
presented, a time savings of 2.89:1 and 3.49:1, respectively, were
observed versus echo-integration, with much larger savings
versus peak-picking. Thus, simple post-processing can provide
low-variance estimates of T2 relaxation times using accelerated
acquisition and without prior knowledge of a functional form
for the spin echo.
Appendix A. MLE derivation

We proceed by first obtaining a closed-form expression for
x = af for a given T2. Let ~y denote a stacking of the columns of
YW�1/2, then
kðY � xbHðT2ÞÞW�1=2k2
F ¼ ~y�

b1ðT2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1=w1

p
IM

b2ðT2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1=w2

p
IM

..

.

bNðT2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1=wN

p
IM

2666664

3777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

QðT2Þ

x

����������������

����������������

2

; ð12Þ

where IM is the M-by-M identity matrix. Hence, given T2, the value
of x = af minimizing (12) is

bxðT2Þ ¼ ðQ HðT2ÞQðT2ÞÞ
�1

Q HðT2Þ~y: ð13Þ

Omitting the T2-dependence of b(T2) for clarity and simplifying (13),
we obtain

bxðT2Þ ¼ b2
1w�1

1 IM þ b2
2w�1

2 IM þ � � � þ b2
Nw�1

N IM

� ��1

� b1

ffiffiffiffiffiffiffiffiffiffiffiffi
1=w1

p
IM; b2

ffiffiffiffiffiffiffiffiffiffiffiffi
1=w2

p
IM ; . . . ; bN

ffiffiffiffiffiffiffiffiffiffiffiffi
1=wN

p
IM

h i
~y

¼
b1

ffiffiffiffiffiffiffiffiffiffiffiffi
1=w1

p
IM; b2

ffiffiffiffiffiffiffiffiffiffiffiffi
1=w2

p
IM ; . . . ; bN

ffiffiffiffiffiffiffiffiffiffiffiffi
1=wN

p
IM

h i
~yP

kb2
k w�1

k

¼ YW�1b

kW�1=2bk2 : ð14Þ

The objective (5) reduces tobT 2;ml ¼ arg min
T2

kðY � xðT2ÞbHðT2ÞÞW�1=2k2
F

¼ arg min
T2

YW�1=2 � YW�1bðT2ÞbHðT2ÞW�1=2

kW�1=2bðT2Þk2

�����
�����

2

F

: ð15Þ

The later has a number of different forms which lead us to a simpli-
fied expression that is useful for both computation and insight. Let
Y
�
¼ YW�1=2 and B

�
¼ ðW�1=2bbHW�1=2Þ=ðbHW�1bÞ, then we have

bT 2;ml ¼ arg min
T2

kY
�
ðI � B

�
Þk2

F ð16Þ

¼ arg min
T2

trðY
�
ðI � B

�
ÞðI � B

�
Þ

H

Y
�

HÞ ð17Þ

¼ arg min
T2

trðY
�
ðI � B

�
�B
�
þB
�

2ÞY
�

HÞ ð18Þ

¼ arg min
T2

trðY
�

Y
�

H � Y
�

B
�

Y
�

HÞ ð19Þ

¼ arg max
T2

trðY
�

B
�

Y
�

HÞ ð20Þ

¼ arg max
T2

tr
YW�1bbHW�1YH

bHW�1b

 !
: ð21Þ

Finally, explicitly denoting the T2 dependence of b, we have

bT 2;ml ¼ arg max
T2

bHðT2ÞW�1YHYW�1 bðT2Þ
bHðT2ÞW�1bðT2Þ

ð22Þ

At (17)–(19), we used three simple properties:
kAk2

F ¼ trðAAHÞ; BH ¼ B, and B2 = B.

Appendix B. An SVD-based estimator

We have the claim

bT 2;svd ¼ arg
T2

min
T2 ;a

XN

k¼1
jYk � au1 expð�2sk=T2Þj jj2 ð23Þ

¼ arg
T2

min
T2 ;a
kv1 � abðT2Þk2

: ð24Þ
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This equality in (24) is demonstrated using simple properties of the
trace operator, tr, and completing the square. Define bh to be any
length N vector parametrized by h, and let Y = U SVH be the singular
value decomposition of the noisy data array, Y. Recall that
kAk2

F ¼ trðAHAÞ and columns of U are orthonormal to learn

ĥsvd ¼ arg
h

min
a;h

Y � au1bH
h

��� ���2

F

¼ arg
h

min
a;h

tr VSUH � abhuH
1

� �
USVH � au1bH

h

� �n o
¼ arg

h
min

a;h
tr VSUHUSVH � 2abhr1vH

1 þ a2bhuH
1 u1bh

n o
¼ arg

h
min

a;h

XN

k¼1

r2
k � tr 2abhr1vH

1

	 

þ tr a2bhbH

h

n o
¼ arg

h
min

a;h
s
XN

k¼2

r2
k þ kr1v1 � abhk2

¼ arg
h

min
a;h

kr1v1 � abhk2
:

which establishes that which was to be shown. Further, following
again the steps in Appendix A, we have the equivalent
representation,

bhsvd ¼ argmin
h

bH
h v1vH

1 bh

bH
h bh

: ð25Þ

The effectiveness of the suboptimal estimator in (25) can be illumi-
nated by comparison to the MLE. To this end,

bhml ¼ argmin
h

bH
h YHYbh

bH
h bh

¼ argmin
h

bH
h VS2VHbh

bH
h bh

¼ argmin
h

bH
h v1vH

1 bh

bH
h bh

þ 1

bH
h bh

XN

k¼2

rk

r1

� �2

jbH
h vkj2: ð26Þ

Thus, the first term in the cost function (26) is identical to the cost
in the SVD-based estimator. The second term is absent from the
SVD estimator, which is therefore suboptimal. However, the role
of the second term is made minor in two ways. First, the ratio of
squared singular values greatly reduces the influence of the second
term; second, the vk’s are orthogonal, leaving the inner product bH

h vk

having small magnitude for k > 1.
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