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Electron spin resonance imaging (ESRI) is an important branch of ESR that deals with heterogeneous sam-
ples ranging from semiconductor materials to small live animals and even humans. ESRI can produce
either spatial images (providing information about the spatially dependent radical concentration) or
spectral–spatial images, where an extra dimension is added to describe the absorption spectrum of the
sample (which can also be spatially dependent). The mapping of oxygen in biological samples, often
referred to as oximetry, is a prime example of an ESRI application. ESRI suffers frequently from a low sig-
nal-to-noise ratio (SNR), which results in long acquisition times and poor image quality. A broader use of
ESRI is hampered by this slow acquisition, which can also be an obstacle for many biological applications
where conditions may change relatively quickly over time. The objective of this work is to develop an
image reconstruction scheme for continuous wave (CW) ESRI that would make it possible to reduce
the data acquisition time without degrading the reconstruction quality. This is achieved by adapting
the so-called ‘‘statistical reconstruction’’ method, recently developed for other medical imaging modali-
ties, to the specific case of CW ESRI. Our new algorithm accounts for unique ESRI aspects such as field
modulation, spectral–spatial imaging, and possible limitation on the gradient magnitude (the so-called
‘‘limited angle’’ problem). The reconstruction method shows improved SNR and contrast recovery vs.
commonly used back-projection-based methods, for a variety of simulated synthetic samples as well
as in actual CW ESRI experiments.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Electron Spin Resonance Imaging (ESRI) is an important method
in the field of magnetic resonance [1], with applications ranging
from materials science [2,3] to biology and medicine [4–6]. Unlike
the more common method of NMR imaging, ESRI usually requires
the addition of exogenous spin probes, such as soluble stable trityl
radicals [7] or solid paramagnetic particulates (e.g., lithium octa-n-
butoxy 2,3-naphthalocyanine, termed LiNc–BuO [8]), to the sample
of interest. Furthermore, due to the short relaxation time of most of
these spin species, many ESRI experiments cannot be carried out in
the pulsed mode of acquisition and require the use of continuous
wave (CW) acquisition. This is done by recording several CW spec-
tra under conditions of static gradients with varying amplitudes
and directions to spatially encode the sample signal. Such encoding
mechanism results in a set of so-called projections which serve as
the basis for the image reconstruction algorithm.

In CW ESRI, it is customary to differentiate between two types
of image acquisition modes: (a) Cases where there is only one type
ll rights reserved.
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of paramagnetic species in the sample and its ESR spectrum is
invariant in space. In such events, the required image includes only
information about the spin concentration in space (in 1D, 2D or 3D
– purely spatial), while the spectral information is not important
(trivial). (b) Cases where there is either more than one paramag-
netic species in the sample or a single species but with a space-
dependent spectrum (for example, different line-widths due to dif-
ferent O2 concentrations). In such events, the required image
should include both the spin concentration (in 1D, 2D, or 3D)
and an additional spectral dimension resulting in an overall 2D,
3D, or 4D spectral–spatial image. The type of image to be acquired
determines the type of projections that are to be collected, i.e.,
their number, angular extent around the object, magnitude of gra-
dients employed and field span. The image is then obtained by
making use of some reconstruction algorithm that takes the pro-
jections and transform them to an image, as outlined below.

As noted above, for most bio-medical applications, the ESR tech-
nique requires the incorporation of a suitable exogenous paramag-
netic imaging agent (spin probe) into the system under
investigation. To avoid toxicity and/or for other practical reasons,
the imaging agents are to be administered in small doses, which of-
ten results in noisy projection data. In addition, long data-collection
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times with many acquired projections must be avoided in order to
cope with the biological clearance of the imaging agent and/or to
acquire several time-resolved images with sufficient time resolu-
tion. The purpose of this work is to provide and test a new approach
to improved image reconstruction under such limiting conditions
as low signal-to-noise ratio (SNR) and a relatively small number
of projections. It should be noted that CW ESRI is far less common
than other imaging modalities that also make use of projection
data, such as magnetic resonance imaging (MRI), positron emission
tomography (PET), and X-ray computerized tomography (CT).
Although many advanced image reconstruction techniques have
been developed for the abovementioned clinical methods, it is not
straightforward to implement them in the field of ESR. This is due
to the unique nature of CW ESRI that acquires projections that
‘‘hide’’ the spin concentration information within the spectral prop-
erties of the sample and also uses static field modulation, which fur-
ther complicates the spectrum. Furthermore, other modalities do
not encounter the limited angle problem (see below), and also CT
and PET do not have to cope with a spectral dimension in addition
to the three spatial axes.

Here we first provide some theoretical background about the
image reconstruction problem in general, and briefly describe the
major existing approaches to it. Following that, our algorithm is
presented in details and examples are given for the reconstruction
of a numerical image phantom based on synthetic projections, and
also for the reconstruction of an ESR image based on experimental
projection results.
2. Theory

2.1. The image reconstruction problem in CW ESRI

The images in a CW ESRI acquisition process can be obtained by
solving an image reconstruction problem using a specific set of
experimentally-acquired projection data [1]. In general, the image
reconstruction problem can be defined in the following manner:
assuming the existence of an object denoted X in a p-dimensional
space (in this work, we refer to p = 2, 3, or 4), then X � Rp is the
support in the object domain imaged by the imaging system. (In
this paper, 2D or 3D matrixes and 2D functions are noted with cap-
ital letters, while vectors and 1D functions are noted with minis-
cule letters. Moreover, operators are noted using a superscript �,
continuous variables use () for indexing, and discrete variables
use [ ]). The measured projection data Y is acquired in a two-
dimensional space (angle and field position), and the support of
the projection domain is K � R2. Our measurement model assumes
the following form:

y ¼ G � xþ t; ð1Þ

where x � R denotes the imaged object (when all voxels are ar-
ranged in a single vector – see below), y � R denotes the measured
projections, also arranged in a single vector (see below), G � R2 is
the imaging system matrix, and t is a noise vector. In the context
of ESRI, x[j] is the spin concentration in the jth voxel, where the
voxels are indexed starting from x[1] = X[1, 1, . . ., 1] through
x[n1] = X[n1, 1, . . .,1] and then continuing onto the second index of
X and so on (where nj is the size of X jth dimension). The measured
data is indexed by y[i] = Y[U,k], where U is the projection angle in-
dex and k is the field position in the spectrum (so i = (U � 1)�n + k,
where n is the number of samples in the recorded spectra). Finally,
each component of the G system matrix, denoted as G[i,j], is the de-
tected signal amplitude in the recorded projection spectrum from a
unit spin density located at voxel x[j], measured in projection posi-
tion y[j]. The goal of a reconstruction algorithm is to estimate x from
y for a given system matrix G that simulates the physical acquisition
process.

Let us now first briefly describe the main types of reconstruc-
tion algorithms employed in ESRI to date and then present our
own approach, denoted EsrSr (Electron spin resonance Statistical
reconstruction), and its contribution to the field.

2.2. Existing approaches to image reconstruction in CW ESRI

2.2.1. Analytical approaches to image reconstruction and their
limitations

For simplicity purposes, we limit our discussion in this section
to the case where p = 2. Thus, the imaged object can be explicitly
described by x(u1,u2) e R2 Let ~R denote the continuous Radon
transform operator [1] and pU(r) the Radon projection at angle U,
then P ¼ ~RðXÞ and

pUðrÞ ¼
Z

Xðl cosðUÞ þ r sinðUÞ; l sinðUÞ � r cosðUÞÞdl: ð2Þ

Let ~RT denote the adjoint operator of the continuous Radon trans-
form ~RT , then X1 ¼ ~RTðPÞ:

X1ðu1;u2Þ ¼
1

2p

Z 2p

U¼0
pUðu1 cosðUÞ þ u2 sinðUÞÞdU: ð3Þ

In ESRI, the actual projection (recorded spectrum) is affected by
a kernel s(r) that operates on the pure projection data as a
convolution:

yUðrÞ ¼ sðrÞ � pUðrÞ; ð4Þ

where � denotes a 1D convolution and we assume that s is symmet-
ric. We also denote as ~Sa the convolution operator characterized by
this symmetric kernel. In cases of pure spatial ESRI, s is easily ob-
tained by recording a spectrum without any gradients. Thus, we
can write the acquired projection data as:

Y ¼ ~SP ð5Þ

and the forward system operator ~G is given by:

~G ¼ ~S ~R: ð6Þ

Let us now define the backward system operator ~GT :

~GT ¼ ~RT~ST ; ð7Þ

where ~ST is the deconvolution operator using s(r) as a kernel. Those
notations can be extended to the discrete case where system oper-
ator ~G becomes system matrix G and ~S and ~R are replaced by their
discrete representation, S and R, respectively. The discrete forms
will be discussed in more details in Section 3.

Focusing for a moment on pure spatial ESRI, in the special case
that s(r) = d(r) (the Dirac delta function), yUðrÞ ¼ pUðrÞ, and assum-
ing continuous data and continuous sampling, the Projection Slice
Theorem [9] holds. In such a case, the most common reconstruc-
tion method is the analytical method of Filtered Back-Projection
(FBP):

x̂FBP ¼ ~RT � ðh � yÞ; ð8Þ

where � is a 1D convolution and h is the ramp filter whose fre-
quency response is given by |x|. The ramp filter has been derived
analytically in the continuous space. In the discrete space the FBP
is an approximation, and additional filters are also proposed in or-
der to reduce the noise-enhancing effect of the ramp filter. These in-
clude the Shepp–Logan [10], Ram-Lak [11] and Hamming [12] filters
Furthermore, for many of those filters it is possible to use a fre-
quency cutoff, fc, that defines the highest desired frequency in the
projections. A lower fc results in a degraded resolution, but also re-
duces the noise in the image.
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In most cases, however, the influence of s (i.e., s(r) – d(r)) can-
not be ignored, which means that even the approximate FBP con-
ditions clearly do not hold any more. In pure spatial ESRI, the
common approach in this case is to apply an algorithm of spec-
tral deconvolution to the projections before applying the FBP
algorithm [1]. A common spectral line-shape would be the deriv-
ative of a Lorentzian function. The deconvolution process en-
hances the high frequencies, often leading to increased noise.
As a result, deconvolution, as a pre-processing stage for the pro-
jections, has its limits in enhancing the resolution of the final ESR
image, and its efficiency greatly depends on the projections’ SNR
[13].

The case of spectral–spatial imaging corresponds to an addi-
tion of one dimension, 1, to the image, but on the other hand,
s(r) can be considered equal to d(r). Here, conventional ESRI pro-
cessing also often employs FBP [1]. Another difference between
purely spatial and spectral–spatial images is that the latter pres-
ent the ‘‘limited angle’’ problem. This problem emanates from
the finiteness of the available gradient amplitude in the ESRI
experiment, limiting the elevation angle from the spatial to the
spectral axis [14]. Two examples of algorithms based on FBP that
were employed to solve this issue are the projection slice
algorithm (PSA) [15] and the projection space iteration recon-
struction–reprojection (PSIRR) algorithm [16]. Both are mathe-
matically equivalent to a linear interpolation in the angular
direction in the image space. If the image in the limited angle area
is piecewise linear, then linear interpolation might be reasonable;
however, in the case of more realistic images, linear interpolation
is a not a good estimation. Moreover, PSA applies a non-negativity
constraint to improve results, as those are not part of the expected
physical solution [17]. However, the original projections obtained
in the ‘‘derivative form’’ are always both positive and negative and
when used without any pre-processing (in the hope of obtaining a
more accurate spectral representation of the sample), would lead
to image that can be negative in the spectral dimension, making
the implementation of this technique problematic. As we will
see below, it can be advantageous to try and reconstruct the im-
age with the spectral information appearing on the spectral axis
in the original ‘‘derivative form’’. This makes it possible to analyze
the reconstructed image spectrum on a pixel-wise basis, and then
to extract the spatially-depended spectral features in a much bet-
ter way.

Another issue of concern in spectral–spatial image acquisition is
the need to consider cases where relatively large field modulation
amplitudes are employed to enhance SNR, but where good spectral
resolution should still be maintained. Here, FBP was used in con-
junction with line-fitting in the spectral domain to reconstruct
back the nonmodulated pure spectral components [18,19]. How-
ever, such approach assumes a single type of spectrum in each vox-
el (as it applies a line-fitting algorithm to a predefined Lorentzian
line). Further to this assumption that does not always hold, at
low SNR levels this parametric method has problems estimating
the central position of the spectrum and its full width at half max-
imum (FWHM), which can lead to unstable results.

It can be summarized that, due to the collective effect of the FBP
approximations and the deconvolution procedure (for purely spa-
tial ESRI), this reconstruction algorithm is far from being optimal.
The problems are usually more pronounced when the acquisition
suffers from a low SNR and/or for a limited number of projections.
In such cases, the image reconstructed by FBP includes known
streaking artifacts that are more intense in image periphery and
appear as lines emanating from regions of high spin density [20].
Other types of artifacts, such as Gibbs phenomena (visible as ring-
ing and overshoots), are typically caused by inadequate radial sam-
pling rates. Artifacts of this type are more intense in regions where
the image changes rapidly [1].
2.2.2. FBP-based numerical methods for improved image
reconstruction

In order to overcome the FBP artifacts mentioned above, some
previous works have employed pre-processing of the projections
before running the FBP and/or added a post-processing procedure
on the resulting image. An iterative method for pre-processing
using a nonlinear fit to the projection data has been shown to pro-
duce ripple-free images [21]. When introducing this idea into a
multiplicative simultaneous iterative image reconstruction tech-
nique (MSIRT), deconvolution is executed as preprocessing and
only the Hamming smoothing function is introduced into the
reconstruction. This and other similar preprocessing methods
[13] are still suboptimal since object constraints such as nonneg-
ativity and piecewise smoothness are not naturally expressed in
the projection domain K. Also, no specific consideration of noise
distribution is taken into account in the reconstruction process.
Other works add a post-process to the final image in order to can-
cel the streaking and Gibbs artifacts using some prior knowledge
[22]. Such space-invariant postsmoothing the disadvantage of not
incorporating nonstationary measurement statistics since smooth-
ing is not adaptive to the SNR of the processed region. Further-
more, the algorithm requires prior knowledge about the image
type, which can constrain this type of processing.

It can be summarized that methods based on FBP often suffer
from the fact that it is an approximation of an idealized mathemat-
ical model of continuum measurements, that they do not consider
modulation as an integral part of the reconstruction, and that they
do not account for specific noise statistics. However, thanks to the
linear nature of FBP, it is relatively easy to implement such meth-
ods and to analyze their properties.

2.2.3. Iterative reconstruction algorithms
2.2.3.1. Algebraic methods. Other types of approaches try to over-
come some of the abovementioned limitations of the FBP algo-
rithms using algebraic iterative methods known as ART and
MART [23,24]. These models assume noiseless projections y = Gx
and aim at finding the solution of x̂Algebric ¼ G�1y algebraically. This
approach is far from optimal as the system is underdetermined and
is not robust, leading to a behavior where small changes in y may
cause a large change in the reconstructed image x̂Algebric .

2.2.3.2. Statistical methods. A more generalized view that allows
characterizing different types of approaches for iterative image
reconstruction algorithms is based on the notion of ‘‘statistical
methods for image reconstruction’’ [25]. All statistical methods
can be characterized through a general objective function to be
minimized, which is:

UðXÞ ¼ WðY;XÞ|fflfflfflffl{zfflfflfflffl}
Data Fit

þb � RðXÞ|ffl{zffl}
Penalty

; ð9Þ

where W fits the object X to the measured data Y, R(X) is a penalty
function that encourages realistic estimates of the object X, e.g.,
smoothness, and b is a positive real value that defines the intensity
of the penalty function. In general, when employing statistical
methods, the choice of the objective function takes into consider-
ation also the noise in the measurements and its distribution in
view of the physical measurement process. This leads to better
reconstructed image results under conditions of low SNR. Another
advantage of statistical reconstruction is that the projections do
not need to be equally spaced as in FBP. In general, it is known that
for a limited number of projections statistical methods for image
reconstruction yield higher-quality images than FBP reconstruction,
but at a price of increased computation [25].

Statistical reconstruction methods relying solely on data fit
functional criteria (b = 0) often produce images that become
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unacceptably noisy as the iterations proceed. Methods for avoiding
this problem include: (i) stopping the iteration before the images
become too noisy (long before convergence) [26], (ii) iterating until
convergence and then post-smoothing the image [27]; (iii) using
smooth basis functions [27]; and (iv) adding a roughness penalty
to encourage image smoothness, meaning b > 0 [28]. The penaliz-
ing approach to noise reduction has two important advantages
over alternatives such as stopping rules and postprocessing. First,
the penalty function improves the conditioning of the problem,
so certain iterative algorithms converge quickly. Second, it is pos-
sible to choose penalty functions that control the desired proper-
ties of the reconstructed images, such as preserving edges [28] or
incorporating anatomical side information [29,30]. In contrast,
the level and type of smoothness that one obtains through stop-
ping rules is much less defined and is limited by the characteristics
of the iterative algorithm. It is known that the global smoothing
parameter b controls an overall tradeoff between resolution and
noise: larger b s lead to coarser resolution but less noise, and vice
versa [31].

An example of the use of statistical methods in the field of ESRI
is the maximum entropy method, in which the penalty function is
defined as

Entropy½X� ¼ �
Xn

i¼1

pbðx½i�Þ � logðpbðx½i�ÞÞ or Entropy½X�

¼ �
Xn

i¼1

log pbðx½i�Þ: ð10Þ

In the statistical framework, X is considered to be a random var-
iable and pb denotes its probability density function. The second
definition of the entropy is termed the ‘‘Burg entropy’’. It is said
that the entropy penalty function does not introduce correlations
into the data beyond those required by the data itself [32]. The
solution that maximizes the entropy is the one which has the low-
est information content.

The maximum entropy method was used in the case of spatial–
spatial imaging; where Burg entropy was used, and the method
was termed LSEnt [33]. It has been shown that the LSEnt method
yields results that are better than FBP and are comparable to the
MART algorithm. In the case of spectral–spatial imaging, a similar
approach called MEM [34] has been used. It should be noted that
entropy is maximal for an X that has a uniform distribution, which
means that the optimization algorithm ‘‘pushes’’ to such a result
which is far from most of the realistic results found in ESRI. More-
over, entropy is a nonlinear operator that poses a problem for the
analytical evaluation of its performance. Another problematic issue
with these maximum entropy methods is that they do not take into
account the field modulation effect as an integral part of the recon-
struction process and only account for it during the pre- or post-
processing stages. Finally, entropy is a global statistical criterion,
as it depends only on pb, and this means that important local fea-
tures in the image may be lost or distorted.
2.3. Our work – the EsrSr algorithm

In this work we make use of the general framework of statistical
image reconstruction methods and apply it to the field of ESRI for
the first time. The new EsrSr algorithm introduced here allows us to
achieve improved reconstruction performances compared to FBP,
under limiting conditions of low SNR levels and a small number
of projections. The statistical method chosen in this work takes
into account a noise model that is characteristic of ESRI data acqui-
sition. Furthermore, in the EsrSr approach, field modulation is inte-
gral to the reconstruction algorithm, thus leading to a more
accurate physical model, and is not treated during some pre- or
post-processing stages. Other important issues in this work are
that, in the case of spatial–spatial imaging, it solves an optimiza-
tion problem with an algorithm that automatically constrains the
original image non-negativity (representing the paramagnetic spe-
cies concentration); in the case of spectral–spatial images (1D or
2D spatial), the algorithm, which in general can consider any type
of ‘‘missing data’’ [35], is used to solve the ‘‘limited angle’’ problem.
Further to that, when considering spectral–spatial images we can
look at cases that employ modulation amplitudes that are 1–4
times the intrinsic line-width of the spin probe in order to increase
the SNR, with the image reconstruction algorithm capable of recre-
ating the original line-width. In that respect, the EsrSr approach
avoids the assumptions and pitfalls of the line-fitting method de-
scribed above and thus may be useful, for example, for in vivo oxy-
gen experiments providing improved accuracy of line-width
measurements under conditions of inadequate SNR. Thus, both
the ‘‘limited angle’’ and the issue of a large field modulation can
be accounted for at the same time during spectral–spatial (2D) im-
age reconstruction. It should be noted that, to our knowledge, no
iterative algorithm has been applied to spectral–spatial CW ESR
imaging with spatial dimensions larger than 1.
3. Forward problem – the ESRI signal, its projections, and the
system’s noise

We start our description of the reconstruction method by first
looking at the forward problem, leading from a sample with a spe-
cific set of spatially-dependent spin concentration and ESR spectra,
to a set of projections. First and foremost, the formulation of the
forward problem is needed as part of the iterative process, where
the matrices G and GT are employed (see also below). Furthermore,
the forward process is also needed to generate the synthetic pro-
jections from predefined test samples that are used for algorithm
testing.
3.1. The ESRI signal as a function of field modulation

The effects of magnetic field modulation on the resonance line-
shape were studied already in the early 1960s [36]. Wahlquist
pointed out that when the modulation amplitude equals 2 times
the intrinsic half width at half maximum (HWHM) of the line,
the ESR signal reaches its maximum. While such relatively large
modulation amplitudes lead to an improved SNR, they also degrade
the spectral resolution. However, since the mechanism of spectral
broadening can be well characterized, one can in principle recon-
struct back the native spectral resolution from the over-modulated
spectrum. Hyde et al. [37] proposed a filtering algorithm (pseudo-
modulation) to simulate the effect of sinusoidal magnetic field
modulation and recover the intrinsic spectra of the sample. The
pseudo-modulation technique was successfully applied for spec-
tral resolution enhancement [38] and was recently justified by
Nielsen and co-workers by solving the Bloch equation [39]. Robin-
son et al. [40,41] published a universal model to simulate the
experimental ESR spectra in liquids by incorporating both modula-
tion amplitude and frequency. They demonstrated that with a pre-
cisely-known modulation amplitude, the intrinsic line-width could
be accurately extracted through curve fitting of the over-modu-
lated (up to 20 times its intrinsic line-width) spectra. Based on
Robinson’s model, Mailer et al. [19] recently reported a remarkable
precision improvement in the line-width measurement of the
deoxygenated OX031 spin probe using ESR spectral–spatial
imaging.

Here we employ Robinson’s model [40,41] to calculate the ef-
fects of field modulation and incorporate them in the forward sys-
tem projector operator, according to Eq. (6), where ~S includes the
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effect of the field modulation. First, we consider the CW ESR spec-
trum of a point sample with unit amplitude located in the origin,
having a Lorentzian ESR line-shape with an intrinsic FWHM of s.
The spectrum for such a sample is given by the expression:

SignalðrÞ ¼ � 1

p ðB0 � rÞ2 þ i s
2

� �2
� � ; ð11Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

. Using Eq. (12) one can define the absorption spec-
trum as. sLo(r) = Im(signal(r)).

We now add the effect of magnetic field modulation with
amplitude Bm and frequency fm. According to Robinson’s model
[40,41] the in-phase, first-harmonic ESR signal is then expressed
as:

signal1ðrÞ ¼ Bm �
1

~g0~g�1
þ 1

~g0~gþ1

� 	
; ð12Þ

where ~g�1 ¼ 1
2 a�1 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð Bm

2a�1
Þ2

qh i
; ~g0 ¼ a0 � Bm

4

� �2 1
~gþ1
þ 1

~g�1

h i
and

a0 ¼ ðB0 � rÞ2 þ i s
2

� �2
; a�1 ¼ a0 � fm

c , where c is the electron gyromag-

netic ratio. We chose fm = 100 kHz for all our results. Following this,
it is possible to define

sRoðrÞ ¼ Imðsignal1ðrÞÞ ð13Þ

as the signal that simulates the effect of modulation.

3.2. The forward system operator ~G generating the projections

We can now continue with the formulation of the forward prob-
lem, described by the forward system matrix G that is the discrete
representation of the forward system operator ~G in Eq. (6).

3.2.1. Discrete Radon transform R

The continuous Radon transform ~R in Eq. (2) has a discrete
counterpart, R. Let’s denote 	 as the rounding function to the clos-
est integer. Then pU[r] = R[X]:

pU½r� ¼
Xln

l¼l0

X½l cosðUÞ þ r sinðUÞ�; ½l sinðUÞ � r cosðUÞ� ð14Þ

The discrete Radon transform for this case is implemented using
the 2D parallel-beam system model based on finely-tabulated foot-
prints [42]. Explicitly, R is the discrete Radon transform that sums
up all pixels in its projection line (U, r) into pU(r).

3.2.2. Spatial–spatial images
As noted above, the system operator also includes the effect of

modulation denoted by S in Eq. (6), calculated using Robinson’s
model in Eq. (14). In practice, S is implemented via a convolution
using sRo[r] on the projections:

y½n� ¼ SRofpg½n� ¼ fsRo � pg½n� ¼
XLength�1

m¼0

sRo½m� � p½n�m�: ð15Þ

The incorporation of the convolution into the system operator
simulates the physical effects of the measurements. It may be ar-
gued that the real physical effect is, first, modulation (expressed
mathematically via convolution), and then projection (the mathe-
matical Radon transform). In fact, the Radon convolution theorem
states that these operators commute [43], namely,
~RðX � sRoÞ ¼ ~RðXÞ � sRo ¼ P � sRo ¼ Y .

3.2.3. Spectral–spatial images
In the case of spectral and 2D spatial imaging, the discrete Ra-

don transform is implemented with a three-dimensional point-
based system model [44]. Explicitly, R becomes the discrete Radon
transform that sums up all voxels on a certain plane whose normal
direction is defined by the angles U, g and its position by r to get
pU,g[r].

When the materials in the image have different line-widths, it is
impossible to know a priori what would be the forward matrix
G since the effect of modulation would depend on the local line-
width of each pixel. Nevertheless, the iterative algorithm needs a
well-defined forward matrix to be properly implemented. There-
fore, for purposes of forward problem calculation, this work as-
sumes that the FWHM of the materials in the image is the same.
Thus, the effect of modulation can be approximated by using a con-
stant kernel with a width that is the average width of the materials’
FWHM. In practice, this is carried out by first finding some average
FWHM value from the zero gradient projection and then building
the function saverage

Ro ½r� according to Robinson’s model, which is de-
fined as:

sAverage
Ro ½r� 
 sRo½r�js¼Average FWHM: ð16Þ

Now, for the forward problem we can first apply S as a convolu-
tion of saverage

Ro ½r� on the spectral dimension of X in the image domain
O, and then apply the Radon transform. The spectral-2D spatial
system matrix is then:

G ¼ RS: ð17Þ

And from this matrix it is easy to calculate the transpose GT that
is needed for the iterative algorithm.

In case we need to create synthetic projections out of a simu-
lated phantom, we use Gfirst that incorporates the knowledge of
the exact line-shape in each spatial position. In this case, Gfirst = R,
as each spatial position in the phantom has the exact line-shape
according to its s value.

3.3. Noise model of the ESRI acquisition system

An important feature of our model, especially when trying to
apply it under the constraint of a low SNR, is the noise behavior.
First, we assume that the sample image X is stationary in time
and does not contain noise. The only source of noise is assumed
to be white Gaussian noise in the projection space obtained during
the acquisition process. In that respect, we assume that the noise is
additive and signal-independent, similar to the approach of Ref.
[45]. Such kind of noise distribution is normally justified in ESR
since it originates from the electronic Johnson noise of the instru-
ment at the modulation frequency. It should be noted that, in some
cases, empirical results showed that the noise is not white, espe-
cially for large values of the modulation amplitude and long time
constant of the lock-in amplifier [45]. In case the noise is not white,
effective prewhitening [46] of the measured signal can be carried
out as a standard procedure that can be applied in most cases.
Moreover, the statistical framework is general and can be adapted
to many types of noise distribution, such as: Poisson [47], Shifted
Poisson [48], Poisson + Gaussian (photon variability and electronic
readout noise) [49], and compound Poisson [50]. Also, it is possible
to empirically estimate the noise distribution in a specific system
and apply it to the algorithm, if necessary. In calculating the pro-
jections for phantom synthetic samples, the noise is added to each

projection according to the SNR, where SNR ¼ maxðyPhantom
U Þ

s:d:ðnoiseÞ , and s.d.

represents the standard deviation of noise.
4. Backward problem – the statistical reconstruction

The backward problem can be defined as reconstructing the im-
age X given the projections Y and the system matrix G. As men-
tioned above, in this work we employ the statistical
reconstruction method to solve this problem (see Section 4.2),
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but for this solution we need the backward system matrix and the
discrete adjoint Radon transform.

4.1. The backward system matrix GT

The backward operator ~GT in Eq. (7) has a discrete counterpart,
GT = RT ST. In the case of spatial–spatial imaging, ST is implemented
by deconvolution using sRo[r] in the projection space K. In the case
of spectral-2D spatial images we use GT = STRT , the adjoint operator
of the forward problem in Eq. (18), where ST applies a deconvolu-
tion using saverage

Ro ½r� as described in Eq. (17) on the spectral dimen-
sion in the image space O.

4.2. Discrete adjoint Radon transform RT

The adjoint Radon transform ~RT (see Eq. (3)) has its discrete
counterpart RT defined by X1 = RT [pU]:

X1½u1; u2� ¼
1

2p
X2p

U¼0

pU½u1 cosðUÞ þ u2 sinðUÞ�: ð18Þ

In the spatial–spatial reconstruction, RT puts the projection va-
lue at position U, r into all the pixels along its projection line. In the
case of spatial-2D spectral reconstruction, RT places the projection
value at position U, g, r into all the voxels along its projection
plane.

4.3. Objective function of the statistical reconstruction

Most statistical methods for image reconstruction require min-
imizing an objective function related to the measurement statis-
tics. Namely, the process of finding the most suitable X based on
the projection data Y and our noise model can be transformed into
a problem of finding the minimum of a suitable objective function.
For realistic image sizes, direct minimization methods are compu-
tationally intractable, so iterative methods are required. Objective
functions should be quadratic, or at least convex and locally qua-
dratic, in order to be suitable for fast iterative algorithms such as
preconditioned conjugate gradients (PCG) and separable paraboloi-
dal surrogates (SPS), which are appealing for reasons of conver-
gence rate, simplicity, and potential for parallelization [51].

In this work we use the maximum likelihood estimator,
x̂ML ¼ ArgMaxxPbðxjyÞ; where Pb(x|y) is the conditional probability
of the image x given the projections y. For zero-mean Gaussian
noise, the maximum likelihood estimator is equivalent to the
least-square estimator, x̂LS ¼ ArgMinxjjy� Gxjj2 [52]. As noted
above, in this work we employ a statistical criterion that the distri-
bution of the noise is white and Gaussian, leading to the following
penalized weighted least-squares (PWLS) objective function [53]:

UðxÞ ¼ jjW � ðGx� yÞjj22|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Data Fit

þb � RðxÞ|ffl{zffl}
Penalty

; ð19Þ

where R(x) is a penalty function that encourages smooth or piece-
wise-smooth estimates, and b is a parameter that controls the
tradeoff between spatial resolution and noise [31]. Our goal is to
compute an estimate x̂EsrSr of x from y by finding the minimizer of
the objective function U(x). In addition, R(x) influences the robust-
ness of the solution, so a minor change in Y will not greatly affect

the resulting X̂EsrSr . The matrix W is a positive and diagonal that ap-
plies a different weight for every measurement: a larger weight wi

affects the objective function more strongly and therefore larger
importance is given to the corresponding measurement. In our case
we use W ¼ 1

r � I, where r is the standard deviation of the noise. In
the case of spectral-2D spatial imaging, the ‘‘limited angle’’ problem
is naturally solved using the W matrix. That is, the corresponding W
entry for the missing angles is simply set to zero. Assuming that the
Fourier transform of s(r) is nonzero at xr = 0 and R is the differenti-

ator operator R: RðXÞ ¼ ð @X
@u1
Þ2 þ ð @X

@u2
Þ2, one can write the minimizer

of Eq. (20) as [31]:

X̂EsrSr ¼ ½GT WGþ bR��1GT W � Y: ð20Þ
4.4. Regularization

It is worthwhile to discuss the reasons for using regularization
and the nature of regularization employed in this work. The solu-
tion for the nonregularized problem (b = 0) with equal weights
(W = I) is achieved by the pseudoinverse of G: X̂LS ¼ ½GT G��1GT � Y :
However, the nonregularized problem is poorly conditioned or
even underdetermined, so some regularization is required to en-
sure a stable solution. Gradient-based iterative methods generally
converge only to local minima for nonconvex regularizing func-
tions, so we focus here on convex penalty functions [54].

For ESRI we have two types of regularization: As noted above, in

the case of spatial–spatial imaging we use RðXÞ ¼ ð @X
@u1
Þ2 þ ð @X

@u2
Þ2

and we assign equal weights to both axes, as the final image is iso-
tropic. This regularization leads to a locally-better resolution/noise
tradeoff than FBP. In the case of spectral–spatial imaging we use a
weighted version of the regularization function

RðXÞ ¼ @X
@u1

� �2
þ @X

@u2

� �2
þw1

@X
@1

� �2
, where 1 is the spectral dimension

and w1 > 0 is the weight assigned to the spectral dimension’s pen-
alty. The reason for using w1 that is not necessarily equal to 1 is be-
cause, in the spectral–spatial image, the typical derivative along
the spectral dimension may be significantly different from that of
the spatial derivative and this has to be accounted for. The value
of w1 can be chosen using prior knowledge based on the FBP results
or from analytical analysis. The FBP results can be used to calculate
the average ratio between the measured spatial and spectral deriv-
atives, and this will be the w1 value for the statistical reconstruc-
tion. This adaptation makes better use of our prior knowledge in
spatial–spectral imaging.

5. Methods

The EsrSr algorithm was coded using Matlab and the recon-
struction toolbox of Prof. Fessler [42].

5.1. Computational platform

The forward/backward system matrix and optimization algo-
rithm are the most intensive computationally and they are imple-
mented in a fully parallelized fashion. We used 8 computational
threads on an Intel� platform with 6 quad-core processing units,
totaling 24 cores at 3.2 gigacycles/s and with 24 gigabytes of
RAM memory. On this platform, one iteration of the iterative algo-
rithm for the spatial–spatial simulation case lasts 0.15 s for a
reconstructed image of 1282 pixels and projection size 180 � 140
[angular samples � radial samples]. For the spectral-2D spatial
simulation, one iteration lasts 13 s for a reconstructed image of
1283 voxels and projection size 512 � 140 [angular sam-
ples � radial samples].

5.2. Optimization algorithm and initial image conditions

In the case of spatial–spatial images, the EsrSr algorithm uses
the SPS [55] optimization algorithm in order to constrain image
nonnegativity with fast convergence. The PCG [51] optimization
algorithm is used for obtaining fast unconstrained optimization
(faster than the SPS that is constrained) in cases where spectral



Fig. 1. Flowchart schematically showing the different processing approaches using EsrSr and EsrSrU. The raw projections P are used to create the FBP image and inside the
Statistical Reconstruction algorithm. The EsrSrU starts from a uniform image X0 while the EsrSr starts from the FBP image. The stopping criterion of the algorithm is a specified
maximum number of iterations n, and Xn is the final reconstructed image.
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reconstruction is required in one of the image axes. As for initial
image conditions, in some of the calculations we used a uniform
image denoted here as EsrSrU. Alternatively, in other cases we used
the FBP reconstructed image result as the initial image for the EsrSr
to see the added contribution of our method to the image quality. A
flow chart describing the reconstruction procedure is presented in
Fig. 1.
5.3. Simulated and experimental input data

5.3.1. 2D spatial–spatial data
The forward problem algorithm described in Section 3.2.2 was

used to simulate the projection results for a Shepp–Logan phantom
[56]. The simulated projections were obtained for uniform angular
sampling. The projection size was 180 � 140 [angular sam-
ples � radial samples], while the final reconstructed image size
was 128 � 128 pixels. The experimental results of a test sample
with 2 crystals of lithium phthalocyanine (LiPc) and one crystal
of LiNc–BuO free radicals, described in [57] (see also Section 6.2
below), were collected with uniform sampling of 256 � 256 [angu-
lar samples � radial samples]. In order to evaluate our algorithm
we subsampled the raw data into 64 � 256 [phi Samples � radial
samples]. The final reconstructed image size was 128 � 128 pixels,
corresponding to a physical image size of �500 � 500 (lm2).
5.3.2. Spectral-2D spatial data
The simulated results were obtained using the forward problem

algorithm described in Section 3.2.3. The sample model is a Shepp–
Logan phantom to which we added a spectral dimension (a sym-
metric Lorentzian line, with position-dependent linewidth – see
Section 6.1.2). The simulated projections size was 512 � 140
[angular samples � radial samples], with maximum theta angle
of 86.3�. For each spectral angle [86.3� to �86.3� using 16 samples]
we sampled the spatial angle [0–360� using 32 samples]. The
reconstructed image size was 1283 pixels. The experiments in
spectral-2D spatial imaging were performed with a sample that
is described in details in Section 6.2. The projection size was
4096 � 256 [angular samples � radial samples] with maximum
theta angle limited to 86.3�. In order to evaluate our algorithm
we subsampled the raw data into 1024 � 256 [angular sam-
ples � radial samples]. For each spectral angle [86.3� to �86.3�
using 16 samples] we sampled the spatial angle [0–360� using
256/64 samples]. The reconstructed image size was 1283 pixels
which correspond to and image size of 500 � 500 � 2
[lm � lm � G].

5.3.3. Image quality assessments
In order to quantitatively analyze the quality of the recon-

structed image, we define a normalization parameter

c ¼
Pn

i¼1
Phantomðx½i�ÞPn

i¼1
Imageðx½i�Þ

, where n is the total number of pixels or voxels

in the final image. Thus, the Mean Square Error is defined as:

MSE ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

PhantomðxiÞ2
s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðPhantomðx½i�Þ � c � Imageðx½i�ÞÞ2
vuut : ð21Þ

This kind of measurement is quite standard in the image-pro-
cessing community.

The MSE takes account of the noise increase as well as the res-
olution decrease in the reconstruction image. Another type of im-
age quality measurement is the Relative Squared Error (RSE),
which measures how close is the spin distribution within the
reconstructed image to the true spin distribution [58]:

RSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðPhantomðxiÞ � c � ImageðxiÞÞ
PhantomðxiÞ2

2
vuut : ð22Þ

This kind of measurement takes into account the relative error.
Since RSE is defined up to a constant factor, in our case we chose to
multiply Eq. (23) by 1/100 so that the RSE and the MSE can be pre-
sented on the same graph in a similar scale. The RSE gives lower
weight to high intensity pixels; this is a dominant phenomenon,
especially at the edges. For this reason, the RSE is quite insensitive
to resolution loss.

In the case of spectral–spatial images, a one-dimensional cut
along the spectral axis of the reconstructed image can be compared
to the original one on the phantom by means of the Contrast
Recovery (CR) factor given by:

CR ¼ maxðprofileðImageÞÞ
maxðprofileðPhantomÞÞ � 100%: ð23Þ
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The contrast recovery of the main lobe, denoted by CRM, is de-
fined on the main lobe section of the profile and should be maxi-
mal for a good reconstruction algorithm. On the other hand, the
contrast recovery of the side lobes, denoted by CRS, is defined on
the rest of the profile and should be minimal. That is, in a single
line spectrum, the image’s reconstructed spectral axis should pro-
vide just a single line with minimal amount of side lobes near it.
For an image-quality comparison, all images have been normalized
to the maximal value in order to enable better visibility of contrast
and resolution improvements.

6. Results

In order to evaluate the EsrSr and EsrSrU algorithms we com-
pared their outputs to those of the FBP algorithm. We used as input
for the algorithms a set of projections based on a simulated test
sample as well as projections acquired in real experiments with
well-defined samples.

6.1. Simulated test data

6.1.1. Spatial–spatial
6.1.1.1. Qualitative results. We begin by looking at the reconstruc-
tion results for a Shepp–Logan phantom, which was chosen be-
cause it is commonly employed in the literature and it allows for
evaluating the quality of the reconstruction algorithm in terms of
noise, resolution, and contrast altogether. The noise can be evalu-
ated by observing the smoothness of the background, as the back-
ground in the phantom is completely flat. Another method to
XTrue

A

EsrSr

C

Fig. 2. Spatial–spatial phantom reconstruction results: (A) the original image (denoted X
reconstructed image using nonnegativity constraints and the FBP image as the initial imag
images, the projection SNR = 2 and the modulation amplitude, Bm, is equal to the FWHM
evaluate noise is to observe the uniform areas inside the phantom.
A good method to evaluate the resolution of the final image is to
observe the width of the phantom’s contour; the wider the con-
tour, the worse the image resolution. Contrast can be evaluated
when comparing the signal intensity in the central hot spot to its
uniform background.

Fig. 2 shows an example of typical image reconstruction results
for a low SNR Shepp–Logan phantom using a relatively low field
modulation amplitude that is equal to the linewidth. Comparing
the FBP (Fig. 2B) to the result of the EsrSrU (Fig. 2D), it is clear that
the granular noise inside the phantom’s uniform areas and in the
background is much more dominant in the FBP image. Also, when
EsrSr starts from the FBP image as an initial condition, it clears
away some of this kind of noise. Moreover, the phantom’s circular
contour has a higher intensity in EsrSr than in FBP, closer to that of
the original phantom. The width of the contour accounting for the
resolution of the reconstruction is similar in all three cases. Central
hot-spot contrast is better in EsrSrU as the background has lower
intensity and the hot spot has higher intensity than in the FBP
and EsrSr.

Fig. 3 simulates the effects of increasing Bm from s to 1.5s,
which increases the SNR from 2 to 3. (When using larger modula-
tion amplitudes, the projection’s SNR should improve almost line-
arly with the modulation amplitude – up to Bm = 2s [59]). When
comparing Fig. 3 to Fig. 2 it is clear that the background noise
has decreased in all the algorithms, but there is a small resolution
deterioration of the contour. It is also apparent that the EsrSrU
(Fig. 3D) can reconstruct the image better than the FBP (Fig. 3B),
under these overmodulation conditions. This is because the phan-
FBP

EsrSrU

B

D

True); (B) the FBP results after negative value cancelation; (C) the EsrSr algorithm-
e; (D) same as (C) but using a uniform image as initial image (denoted EsrSrU). In all
line-width of the given ESR spectrum (Bm = s).



XTrue

A
FBP

EsrSr EsrSrU

B

C D

Fig. 3. Same as Fig. 2, but with SNR = 3 and Bm = 1.5s.

XTrue

A

FBP

EsrSr EsrSrU

B

C D

Fig. 4. Same as Fig. 2, but with SNR = 4 and Bm = 2s.
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tom’s background and flat areas are smoother. Furthermore, the
width of the phantom contour shows that the statistical methods
(Fig. 3C and D) recover the resolution as good as FBP (Fig. 3B).

Fig. 4 presents yet another case where modulation amplitude is
increased to two times s (with a corresponding increase in projec-
tion SNR). This causes a deterioration of the projections’ resolution,
and as a result the resolution of the final image is also degraded.
This can be seen in all three reconstructed images when comparing
Fig. 4 to Fig. 3. Moreover, it is clearly seen that the granularity noise
in the uniform areas is accentuated compared to Fig. 2, but noise in
the EsrSrU (Fig. 4D) is still considerably lower than in the FBP algo-
rithm (Fig. 4B). However, the SNR increase in the projections fails
to improve the overall image quality as the recovery of the over-
modulation is not as effective as in Fig. 3.
6.1.1.2. Quantitative results. As noted above, our goal is to improve
the reconstructed image quality under the constraints of low SNR
and/or a relatively small number of projections. In order to eval-
uate the quality of the reconstructed images for the Shepp–Logan
phantom in a quantitative manner, we compared the RSE and MSE
vs. SNR for three different modulation amplitudes. This quantita-
tive image analysis is presented in Fig. 5. It should be noted that
in this type of analysis, the reconstruction regularization parame-
ters are held constant for each modulation over the entire SNR
span, i.e., fc for FBP and b and for the statistical method. On all
three graphs it is clear that, for a low SNR of up to �2, EsrSr
and EsrSrU yield a better MSE than FBP, with EsrSrU having an
MSE that is about 15% better than EsrSr. For a high SNR of more
than 6, it seems that EsrSrU is inferior to FBP and EsrSr, which
are both at the same MSE level. When considering the RSE, then
EsrSrU is the best in all SNR levels and for all tested modulation
amplitudes.
Fig. 5. Spatial–spatial – MSE and RSE vs. SNR for different modulation intensities. (A) Mo
in a logarithmic scale for values from 0.8 to 100 while the number of projections is held c
the working points presented in Figs. 2–4, respectively.
6.1.2. Spectral-2D spatial imaging
The Shepp–Logan phantom was generalized to the case of

spectral–spatial imaging, as can be seen in Fig. 6A. Three differ-
ent materials were simulated, with FWHM of 2 G (material 1 –
red), 1 G (material 2 – green), and 0.5 G (material 3 – orange).
Such kind of phantom can represent, for example, samples that
are relevant for oximetry measurements where all of the materi-
als have the same g value and spectral line-shape but different
line-widths. In these simulated results we show the central slice
in the spectral dimension and the 1D cut along the spectral
dimension. Here we note smin as the intrinsic FWHM of the
material with the smallest line-width (material 3). In order to
evaluate the contribution of the algorithm under the constraint
of a limited number of projections, a relatively low number of
only 512 projections were used. Further to that, the projection’s
SNR was kept at a medium level of 10–15, which still produces
reasonable images. The spectral–spatial theta angle was kept at a
rather high 86.3�, so this will not be the factor limiting image
quality.

Figs. 6B–D shows the reconstructed images in the case of
SNR = 10 and a modulation amplitude equal to 2smin. It is clear that
the limiting factor in this case is the small number of projections,
which leads to streaks artifacts apparent in the FBP image
(Fig. 6B), while these artifacts are less significant in the EsrSr and
EsrSrU images (Figs. 6C–D). The phantom’s uniform regions are
smoother in the EsrSrU (Fig. 6D) than in the other images. The lar-
ger central spot of material 1 has better contrast but poorer reso-
lution in EsrSrU (Fig. 6D) compared to the FBP and EsrSr (Figs. 6B
and C). The EsrSrU removes the small hot spot underneath the
large one, while FBP and EsrSr preserve it. Finally, EsrSr (Fig. 6C) re-
duces the streaks in the FBP image, especially in the parts of the
phantom where no material is present, while preserving the con-
trast and resolution of the FBP.
dulation amplitude Bm is equal to s, (B) Bm = 1.5s and (C) Bm = 2s. The SNR is plotted
onstant in this simulation (see Section 5.3.1). The three doted vertical lines indicate



Fig. 6. Spectral-2D spatial phantom- central slice image; Bm = 2smin, SNR = 10. (A) Xtrue – the noiseless phantom; (B) FBP–FBP after negative values cancelation; (C) EsrSr –
with postreconstruction cancellation of negative values, the initial image is the FBP; (D) EsrSrU – with postreconstruction cancellation of negative values, the initial image is
uniform.

Fig. 7. Spectral-2D spatial phantom profiles along the spectral dimension (the 2-Gauss span is divided to 128 points); Bm = 2smin, SNR = 10. (A) Shows material 1 at the central
position in red in Fig. 6 (B) shows material 2 at the central position in green in Fig. 6, finally (C) shows material 3 at the central position in orange in Fig. 6.
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Table 1
CRM:CRS for different reconstruction methods.

Case Reconstruction
type

Material
1

Material
2

Material
3

SNR = 10
modulation = 2smin

FBP 80:23 50:20 60:33
EsrSr 65:28 42:19 56:26
EsrSrU 100:9 36:8 52:11

SNR = 15
modulation = 3smin

FBP 65:16 65:15 56:10
EsrSr 58:20 60:22 51:15
EsrSrU 100:7 58:8 56:8
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Fig. 7 compares the one-dimensional cut along the spectral axis
for the original vs. reconstructed images, for each material at the
spatial points indicated in Fig. 6A. The graphs in Fig. 7 show that
the spectral line-shape for materials with smaller FWHM is more
difficult to recover as it is more strongly affected by the relatively
large field modulation amplitude employed in this example. Table 1
summarizes this data in terms of the reconstructed CRM:CRS ratio,
which provides an indication of the tradeoff between a large main
lobe compared to side-lobe recovery. On the spectral axis of mate-
rial 1 (Fig. 7A and Table 1), it is clear that EsrSrU fully recovers the
spectral peak with very low side lobes, compared to the other
methods. As for material 2 (Fig. 7B and Table 1), the CRM of FBP
is better than that of the EsrSrU, but the FBP CRS is twice as large
as the EsrSrU. In material 3 (Fig. 7C and Table 1), the CRM of FBP is
better than that of the EsrSrU by 8%, but the FBP CRS is three time
larger than in the EsrSrU method. Also, EsrSr achieves CRM:CRS
values that are slightly worse than FBP.

Fig. 8 simulates the effects of going up from Bm = 2smin to
Bm = 3smin, which increases the SNR from 10 to 15. FBP and EsrSr
preserve the small hot spot underneath the large one while in
the EsrSrU it is not observed. However, this is at the expense of
Xtrue

A

EsrSr

C

Fig. 8. Same as Fig. 6, but with Bm =
small artifactual small hot spots in the central part of the image
created by the FBP. The large hot-spot contour in the FBP
(Fig. 8B) has a lower contrast compared to the EsrSrU (Fig. 8D).
In this case, the EsrSr (Fig. 8C) achieves a poor result as the
central hot spot is not uniform, yet streak artifacts of the FBP have
been reduced. The comparison between this high modulation
amplitude case (Bm = 3smin, Fig. 8B) and the previous one (Bm = 2-
smin, Fig. 6B) shows that the contrast of the central hot spot
decreases.

Fig. 9 (and Table 1 that summarizes it) shows the reconstruction
results for this case along the image’s spectral axis. It is apparent
that, for all three materials, the side lobes of the FBP are higher
than for the EsrSrU, while the EsrSrU has a main lobe that is com-
parable in height to that of the FBP. Finally, also in this case EsrSr
achieves CRM:CRS values that are slightly worse than FBP. Both
Figs. 9 and 7 show the difficulty of recovering the intrinsic line-
shape in the presence of a large field modulation. However, in gen-
eral, the main lobe contrast recovery is better in Fig. 9 compared to
Fig. 7 and this is due to the improved SNR.

6.2. Experimental data

In addition to the analysis and evaluation carried out with syn-
thetic samples, we also evaluated the performance of our algo-
rithm with real experimental data.

6.2.1. Spatial–spatial imaging
A picture of the sample used in our experiments is shown in

Fig. 10A. It contains many microcrystals with quite a wide range
of sizes that seem to be distributed more or less in a homogenous
manner, with occasional clustering. The 2D spatial ESR image of
this sample is shown in Fig. 11A. It is apparent that, unlike the opti-
FBP

EsrSrU

B

D

3smin and projection SNR = 15.



Fig. 9. Spectral-2D spatial phantom profiles along the spectral dimension (the 2-Gauss span is divided to 128 points); Bm = 3smin, SNR = 15. (A) Material 1 at the central
position in red in Fig. 6, (B) Material 2 at the central position in green in Fig. 6, finally (C) Material 3 at the central position in orange in Fig. 6.

Fig. 10. (A) Optical image of the LiNc–BuO sample used in our 2D spatial imaging experiments. (B) Optical image of a sample containing both LiPc and LiNc–BuO crystals
employed in our spectral-2D spatial imaging experiments.
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cal image, most of the signal originates from �6 to 7 dominant
crystals or clusters of crystals. The subsampled FBP image
(Fig. 11B) shows streak artifacts that are visible in the left part of
the image, and the dominant crystals are blurred compared to a
full acquisition (Fig. 11A). The contrast of the hot spots in the EsrSr
and EsrSrU images is better than in the subsampled FBP (Fig. 11C)
and almost as good as in the original FBP full acquisition (Fig. 11A).
When comparing the background of the dominant crystals it is
clear that the EsrSrU leads to the smoothest background of all.
The resolution can be evaluated by the separation between the
two dominant lower-left crystals; in this matter EsrSr makes it pos-
sible to clearly separate those two spots better than the other algo-
rithms. This shows how our iterative algorithm is less sensitive to
low numbers of projections.

6.2.2. Spectral-2D spatial imaging
Fig. 10B shows an optical image of the sample used for the spec-

tral-2D spatial experiments and Figs. 12 and 13 show the 2D recon-
structed ESR images at two different spectral positions. The sample
contains one crystal of LiPc and two crystals of LiNc–BuO, prepared
under an argon atmosphere, so that their linewidth is less than 1 G.
These two different materials are at their maximal spectral inten-
sity at different position in the spectral axis, as shown in Figs. 12A
and 13A. The number of projections used in the raw data is 4 times
larger than in the subsampled images. The FBP subsampled recon-
struction (Figs. 12B and 13B) shows some streak artifacts due to
the limited number of projections when comparing it to the full
acquisition. These artifacts are almost eliminated completely in
the EsrSr and EsrSrU reconstruction results (Figs. 12C and D), lead-
ing to an even smoother background than in the full acquisition
(Fig. 12A). In the LiNC–BuO slice (Fig. 13), the signal of the LiNC–
BuO crystal in EsrSr and EsrSrU (Fig. 13 C and D) is enhanced com-
pared to the signal of the LiPc crystals in the same slice. The con-
trast and resolution in the images of the three crystals is similar
in the FBP subsampled and EsrSr subsampled modes, and is almost
as good as in the FBP full acquisition. The EsrSrU presents the best
contrast, but on the other hand it provides the worst resolution for
all three crystals.
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I. Kissos et al. / Journal of Magnetic Resonance 231 (2013) 100–116 113
7. Discussion

The results we provide for synthetic samples and the actual
experimental data bring with them several key insights.
7.1. Spatial–spatial images

The image quality for the experimental (Fig. 11) and simulation
(Figs. 2–4) results clearly shows that the EsrSr slightly improves
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the image SNR (by removing some of the streak artifacts and the
granular noise) compared to the FBP while maintaining resolution
and contrast. On the other hand, the EsrSrU shows improved con-
trast and SNR but also a somewhat degraded resolution. This is be-
cause convergence rates and optimal solution depend on the
starting conditions of the algorithms, and when starting with the
FBP image high frequencies emerge relatively fast. Such observa-
tion is true also for the spectral–spatial images. As for the modula-
tion amplitude, from our analysis it is seen that a field modulation
of up to 1.5s (Fig. 3) is beneficial and improves the images both
qualitatively and quantitatively. In the range of 2s (Fig. 4), the
quantitative image parameters (Fig. 5) of EsrSr are improved com-
pared to a smaller modulation, but the visual effect of granularity
noise is unattractive in practice. When comparing a modulation
amplitude of 1s (Fig. 2) to higher modulation amplitudes, it is clear
that the edges are wider and resolution is lower, but up to 1.5s this
smoothing is acceptable in our test set. The contrast of the hot spot
also improves when moving from 1s to 1.5s, but decreases again
when using a modulation amplitude of 2s. Thus, it seems that a
modulation of 1.5s is a good compromise for a better SNR while
keeping a fair contrast and resolution.
7.2. Spectral–spatial images

Our present approach to spectral–spatial image reconstruction
avoids the pre-integration of the projections and uses the statisti-
cal framework to overcome the ‘‘limited angle’’ problem and the is-
sue of de-noising by regularization. The method is nonparametric
as compared to other advanced reconstruction algorithms that em-
ploy a parametric approach (such as [60]). Nevertheless, after
reconstruction, it is possible to acquire the FWHM of the original
line-shape using curve fitting as described in [18,19].

The influence of field-modulation magnitude on spectral–spa-
tial image quality can be obtained from Figs. 6 and 8. It is seen
that overmodulation affects mildly the image quality of the FBP
central slice, mainly reducing the contrast of hot spots compared
to the background. Such effects are corrected by the EsrSr meth-
od. The EsrSrU central slice keeps a uniform background and bet-
ter central hot spot contrast when higher modulation is used.
Large field modulations in the range of 3smin may be beneficial
in some cases where the spectral profile shows lower side lobes
when compared to 2smin, which is good if the goal is to obtain
a less noisy out-of-peak spectral signal. Moreover, main-lobe con-
trast recovery is much better when using an over-modulation of 3
smin and this can help to calculate the FWHM of the main peak
more easily.
7.3. FBP cutoff frequency fc vs. statistical reconstruction penalty b

In conventional FBP image reconstruction, the tradeoff be-
tween noise and resolution is controlled by adjusting the cutoff
frequency, fc, of the back-projection filter. Since fc has units of in-
verse length [61], there is an intuitive and object-independent
relationship between fc and the resolution of the reconstructed
images. In the iterative statistical reconstruction method the reg-
ularization parameter, b, plays a role similar to that of the fc. A
possible disadvantage of using regularization terms in the statisti-
cal method may be the absence of an intuitive method for choos-
ing the value of the regularization parameter, b, even for simple
quadratic penalties. However, the results in Fig. 5 demonstrate
that a constant b fits a large range of SNRs. In all our 2D-spatial
and spectral-2D spatial simulations, b and fc were held constant
for all SNR values and modulations. In low SNRs, better qualitative
results and measurements were achieved using the statistical
methods rather than FBP. This demonstrates that our penalty
function is impervious to major changes in the input’s noise and
modulation.
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7.4. Edge preservation – regularization function

In Figs. 2–4, 6 and 8 the contour of the EsrSrU is smoother than
in the FBP. It is well known that quadratic regularization tends to
oversmooth sharp edges [62]. Our model assumes that samples ta-
ken from a physical object are unlikely to be piecewise constant in
the spatial dimensions, and that wf controls the roughness of the
spectral dimension. This assumption does not hold in the case to
the Shepp–Logan’s contour, as it is similar to a radial apodization
function. In piecewise constant phantoms, some nonconvex regu-
larization functions have shown good results [63]. However, Bour-
nan and Sauer [54] have shown that nonconvex penalties lead to
estimates that are discontinuous functions of measurements. This
means that a slight change in the measurements could significantly
change the reconstructed image. In cases where the object under
study is indeed piecewise constant, there is no doubt that nonqua-
dratic penalties give a better noise/resolution tradeoff [64]. Never-
theless, in the experimental field of ESRI, most samples fit into our
model of mild variation of the intensity.

7.5. Comparing EsrSrU and EsrSr image quality

The need to build high frequencies from uniform images results
in slow convergence of EsrSrU imaging, whereas EsrSr imaging that
starts from an FBP image containing high frequencies converges
faster. As we use a local optimization algorithm, cases that start
with an FBP image which may contain artifacts result in EsrSr that
is constrained to converge toward an image that still suffers from
those artifacts (e.g., Fig. 8C). Conversely, EsrSrU de-noising of gran-
ular and streak noises is very effective (Figs. 3D and 8D). In terms
of MSE and RSE in low SNRs, FBP and EsrSr images are suboptimal
compared to the EsrSrU final image for all modulation amplitudes
tested. When FBP images contain fewer artifacts, as in the experi-
mental data given in this manuscript, EsrSr yields less background
noise while retaining FBP resolution and contrast. In those cases,
EsrSrU produces images that are smoother than EsrSr images and
have a lower contrast. Finally, EsrSr can serve as a good compro-
mise when run time is a consideration, especially in high-dimen-
sional processing. Alternatively, EsrSrU is a viable solution to the
problem of a low SNR and small number of projections.

7.6. Computational cost

The most computationally-intensive part of any iterative recon-
struction algorithm is forward and backward projections. While in
the FBP there is only one back-projection, in every iteration of the
statistical method there is one forward and one backward projec-
tion, which is twice more intensive. As mentioned above, EsrSrU
has a longer convergence time than EsrSr. A good rule of thumb
is that EsrSrU requires twice more iterations for convergence than
EsrSr. In the case of 2D-spatial and spectral-2D spatial imaging,
EsrSrU requires about 10 and 30 iterations respectively in order
to converge on our test set. This means that the EsrSrU algorithm
is 20 to 60 times more computationally intensive than FBP, while
EsrSr is half as intensive. When the computation platform de-
scribed in Section 5.1 is used for simulation reconstruction, EsrSrU
runs for about 20 s in the 2D-spatial case (reconstructed image
size: 1282 pixels) and it runs for about 15 min in the spectral-2D
spatial case (reconstructed image size: 1283 voxels) .

7.7. Limitations of our model

There are several limitations to our model worth mentioning.
To begin with, we do not take into account distortions additional
to white Gaussian noises, such as the instability of baselines and
of resonator frequency. Shifts in resonator frequency cause shifts
in the ESR spectra and may be accompanied by phase shifts that
cause dispersion signals and mixtures. Small frequency shifts cause
the broadening of peaks in the reconstructed image, while larger
shifts could result in spurious peaks. The discrepancy between
experimental projections and ideal projections caused by a fre-
quency shift is signal-dependent. While it may be larger than white
Gaussian noise in regions with high signal intensities, it may van-
ish in regions with intensities close to the baseline. Finally, in the
case of spectral-2D spatial imaging, we use the average line-width
for the deconvolution process (see Section 3.2.3). This approxima-
tion of the physical effect holds up to two times the average line-
width in our experiments (smaller or larger than the average).
For larger line-width differences, the deconvolution process may
deform the reconstructed line-shape.
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