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ABSTRACT: We present a simple yet powerful method of simulating continuous wave
electron spin resonance line shape of triplets in frozen and liquid solutions. The analysis
enables one to consider cases such as immobilized triplets with random distribution,
anisotropic slow and fast rotation of the triplet molecules, exchange between triplets with
different Hamiltonians, anisotropic relaxation rates, and triplets with non-Boltzmann pop-
ulation distribution of the spin levels. Theoretical basis for the method is provided, along
with several examples of simulated and experimental spectra for various physical condi-
tions. A short “Matlab” routine, which can be used in the numerical spectra simulation, is

given in the Appendix.
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INTRODUCTION

Electron paramagnetic resonance (EPR) experiments
mainly involve systems where the signal originates
from a single unpaired electron with two possible
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energy levels, referred to as the doublet state. In many
important cases, however, stable and photoexcited
paramagnetic molecules are found in the triplet state,
having three possible energy levels for their two un-
paired spins. Examples for such systems are (/): O,
molecule in gas phase; point defects in crystals; tran-
sition group and rare earth ions embedded in organic
molecules (e.g., V3*, Ni*"); organic aromatic sys-
tems (e.g., cyclopentadienylidene), and photoexcited
transient triplets (2).

The most important information, obtained directly
by the EPR experiment, is the EPR spectrum. For the
case of triplets, one usually refers to this spectrum as
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Figure 1 Simulated (solid line) and measured (dashed
line) EPR line shape for Ga(tpfc) triplet in frozen toluene at
140 K (borrowed with permission from (3)). Positive sign
corresponds to absorption signal; negative sign corresponds
to emission signal. The “canonical orientations” are marked
with stars. The line shape simulation described in this article
found that the best fitting parameters are A, = 0.64; A, =
047;A, = 0; D = —=31.6 mT; E = 6.73 mT; 1/T,, = 0.46
mT; 1/T,, = 0.42 mT; and 1/7,, = 0.26 mT.

the EPR line shape, as it often appears as a single
inhomogeneously broad line. A typical EPR line
shape of randomly oriented photoexcited triplets is
shown in Fig. 1. It shows experimental results ob-
tained by time-resolved continuous wave (CW) EPR
(3) and their theoretical fit through the line shape
simulation that will be described in this article. The
time-resolved method acquires the spectrum at a spe-
cific time after triplet initiation (usually by a laser
pulse). With this method the spectrum is recorded and
plotted in its “native” form and not as first derivative,
commonly found in doublet state CW EPR (4). The
inhomogeneous broadening of the spectrum in Fig. 1
is due to the angular dependence of the spin Hamil-
tonian, which results in many possible energy levels
for such randomly oriented ensemble of triplets. As a
consequence of this random orientation, the line shape
typically exhibits six pronounced points (marked with
stars in Fig. 1), which correspond to the “canonical
orientations,” at which the magnetic field is oriented
along one of the principle axis of the triplet (/). By
identifying the points of the canonical orientations on
the line shape, one can estimate at first glace, even
without elaborate simulations, the triplet’s zero field
splitting (ZFS) parameters D, E (up to an absolute
value), which describe the relative orientation and the
distance between the two unpaired spins constituting
the triplet (/). Furthermore, the general pattern of the
line shape in Fig. 1 (i.e., absorption in low field and
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emission in high field) immediately implies that the
three triplet levels are polarized (i.e., with non-Boltz-
mann population distribution of the spin levels) (5, 6).
However, the exact nature of this polarization can be
revealed only through detailed line shape simulation,
which provides the relative population rates to the
triplet’s X, Y, and Z levels (A,, Ay, A,), as described
below. Other important parameters, such as the spin-
spin relaxation time, 75, which affects the “sharpness”
of the spectrum, and the molecule rotational correla-
tion time, which affects the general line shape pattern,
can also be obtained through such line shape simula-
tion.

The triplet line shape simulation is therefore a
powerful tool for the extraction of many structural and
dynamic molecular parameters. This methodology
was employed in the past in many cases. For example,
Norris and Weissman used line shape simulation to
extract information about rotational diffusion in
ground state triplets (7); de Groot and van der Waals
investigated conformational interconversions and
their effect on the line shape in photoexcited triplets
(8); Bramwell and Gendell examined pseudorotation
in triplets, through line shape changes (9); and Haarer
and Wolf looked at intermolecular energy exchange
(10). These early examples set the path for modern
research in this field, which attempts to reveal as
much information as possible from the EPR line
shape. Though some of the research mentioned above
is related to stable ground state triplets, most of the
modern work in EPR spectroscopy of triplets involves
transient species, such as the one described in Fig. 1.
Transient triplet species play important role in many
photochemical reactions (/7). EPR is a unique tool to
monitor such intermediates both in terms of its fine
time resolution and the high sensitivity of the line
shape to dynamic processes.

This article discusses the theoretical approaches
that can be employed to analyze quantitatively the
triplet line shape of stable and transient species, under
various conditions, and to extract the relevant param-
eters of interest from it. Two main approaches are
discussed: the “rotational diffusion” method (12, 13)
and the “multiple exchange/discrete jump” method
(14, 15). The first method is involved and thus is
presented only in terms of its basic principles and
primary results. The second method seems to be more
intuitive, can be modified easily to treat general cases,
and is discussed in more detail. We do not provide the
derivation of all the equations from first principles and
focus mainly on the technical aspects of solving the
line shape problem in a general manner, and perform-
ing efficient parameter fitting. A “Matlab” routine that
performs the numerical simulation is provided in the
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Appendix (and can be obtained by e-mail from the
corresponding author). This routine should help read-
ers understand the fine details of the calculations,
enabling “hands-on” experience with such simulative
work.

TRIPLET LINE SHAPE SIMULATION

First we present the triplet spin Hamiltonian under
consideration, which is given in the laboratory frame
of reference by (12, 16)

(1) = gBY - By + DIFY1) —: F(& + 1)}
+ E(F3(0) — F5(0) + e [1]

where
D =Dy~ 5(Dyx + Dy) 2]
E=3(Dy—Dy) [3]
€(t) = 3gBB[S. e ™ + S_e*™]. [4]

Here, D;; are the components of the ZFS D tensor and
¥, are the components of the triplet’s spin operator, &
(whose representation in the laboratory frame of ref-
erence depends on time due to possible triplet mole-
cule rotations). The symbols ¥.. = (¥, = i) are the
Heisenberg raising (+) and lowering (—) spin oper-
ators in the laboratory frame of reference. We will
treat only cases where the electronic exchange inter-
action J is large enough so that the triplet levels can be
considered independently of the singlet level (/6). In
most of the relevant cases the triplets are distributed in
some solvent or in a solid matrix. Therefore, we do
not consider in our treatment g factor anisotropy or
hyperfine terms, as they are seldom resolved in the
inhomogenously broadened triplet spectra obtained
for such cases (/7). The case of single crystal spectra,
where sharp lines are obtained, is unique in this re-
spect (I/8). A good quantitative criteria for safely
neglecting the g factor anisotropy, Ag, is AgB, <<
1/T, (the units of both sides are expressed commonly
in Tesla). In a similar manner, the hyperfine interac-
tion can be considered negligible if it is much smaller
the native line width. Even if these criteria are not
strictly met, in most cases one finds that AgB, << D,
and then the anisotropy can be effectively accounted
for by an increased line broadening (1/7,) in the
simulation without substantial loss of structural or
dynamic molecular information. The CW microwave

radiation, which “probes” these spins and enables the
detection of the EPR signal, is considered through the
term €(t). This radiation is assumed to be weak per-
turbation with respect to the other components of the
spin Hamiltonian. Having defined the scope of our
problem, we now calculate the triplet line shape,
characterized by the above Hamiltonian. The line
shape is normally measured in a specific microwave
frequency, as a function of the applied field. However,
it is more comfortable to calculate the line shape as a
function of frequency for a given static magnetic field
(which is just a mirror image of the experimental
spectrum).

A general expression for the EPR line shape for the
case of CW detection is given by (19, 20)

I(w) = J Tr{peS + (0)F . (D}sin(wr)dr  [5]

where p, is the equilibrium density matrix. Thus, to
calculate the line shape, one must find the time de-
pendant ¥ (¢). In general, the operator time depen-
dence is given by the solution of the equation (27)

9L (1)
ot

= —i[F.(0), %)) [6]

where the Hamiltonian of Eq. [1] has explicit (usually
stochastic) time dependence, due to the possible ro-
tation of the triplet molecule.

One possible approach to solve Eq. [6] is to re-
move the explicit time dependence of the Hamiltonian
using the method suggested by Kubo (22) and to
obtain the stochastic Liouville equation (SLE) of mo-
tion (/2):

07 .(Q,1) .
— = il Q. 0, #(Q)] — T (. 1)

[7]

where I, is a stationary operator, satisfying the dif-
ferential equation

oP(Q, 1)
—— = —TaP(Q,1) [8]
ot

where P(L), 1) is the probability of finding a molecule
at orientation € at time t. After eliminating the ex-
plicit time dependence of the Hamiltonian, one can
diagonalize the Liouville superoperator and then nu-
merically solve Eq. [7] under various limiting condi-



tions (12, 23). This method of solution is involved and
difficult to generalize in the case of energy exchange
(see below).

We employ here a different method and solve Eq.
[6] by modeling the time dependence of the Hamil-
tonian through a set of coupled equations, each with a
different time independent Hamiltonian. For example,
if the Hamiltonian depends on time due to rotational
motion of the molecule, we can account for such
triplet tumbling by assuming the existence of N ficti-
tious species. Each species has its own molecular
orientation with respect to the external magnetic field,
and the coupling between the equations can account
for the molecular rotation. Thus, molecular rotation is
treated not by a continuous rotation of a single species
but as discrete jumps between species having different
molecular orientations. Such discrete jumps, or any
other process that changes abruptly the Hamiltonian,
are denoted here as “exchange process” or simply
exchange. We show (without a rigorous proof) that if
the Hamiltonian is monotonically dependant on the
molecular rotation around one of its axis, then in most
cases such rotation can be accounted for by the ex-
change of just two species with different orientations
with respect to the molecular axis of rotation. If one
considers more involved rotations around two or three
molecular axes, more species are needed to accurately
represent such motion. Thus, in the case of monotonic
Hamiltonian changes due to rotations around the three
molecular axes, three species will be sufficient in
most cases to accurately describe complex rotations.
For a more involved Hamiltonian, with nonmonotonic
behavior due to rotation, or for the case of very slow
motion, one may add additional exchanging species
(analogues to the requirement for larger basis sets in
the solution of Eq. [7] for such cases (/2)). Apart from
its relative simplicity, the advantage of the method
presented here is that more involved and generalized
cases of exchange processes, with or without rotation,
can be treated accordingly. In the most generalized
case, each species may have its own ZFS parameters
(D and E), anisotropic spin relaxation times (7', Ty,
T,,, Ty, Ty, T5,), and anisotropic selective levels’
population (A,, Ay, A, to the triplet X, Y, and Z levels,
respectively) (24). In addition, each species may have
its own orientation in the magnetic field. Thus, the
exchange processes considered here can occur within
the same molecular species undergoing “discrete
jumps” between different possible orientations, and/or
molecular interconversion of conformers, and/or be-
tween two physically different species undergoing
intermolecular exchange. To summarize, in the most
general case we solve a system of coupled equations
where each equation relates to a specific different
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species, which can be a physically different molecule
or the same molecule under different physical condi-
tion (different Hamiltonian).

Before we further present our method, we first
account for relaxation mechanisms. In the formalism
described by Eq. [7], relaxation mechanisms are “au-
tomatically” being accounted for by considering the
continuous stochastic tumbling motion of the mole-
cule, which is usually the dominant mechanism for
spin-spin and spin-lattice relaxation in triplets (2). In
our model, however, the Hamiltonian of each equa-
tion (describing a fixed molecular orientation) is time
independent (disregarding the CW irradiation). Such
formalism eliminates any possible relaxation mecha-
nisms, as there is no stochastic time-dependant part in
the Hamiltonian. Thus, to account for possible relax-
ation processes, a phenomenological Redfield relax-
ation superoperator, R, is added to Eq. [6] (20, 25),
while the Hamiltonian is still kept constant (but still
depends on orientation)

0 (1)
ot

= —i[F.(1), Q)]+ RF (1) [9]

Equation [9] was originally obtained by Redfield with
the assumption that the main Hamiltonian (which
appears in the commutator) is time independent and
there is an additional small stochastic time dependant
term, which is expressed through the relaxation term
9R. Here the same formal equation is employed, which
accounts for any unknown relaxation mechanism, in
the presence of a fixed Hamiltonian. The relaxation
operator employed here contains only elements of
transverse relaxation (7,), which affect the line shape,
but ignores the effects of longitudinal relaxation (7)),
which affects the line shape only indirectly through
the levels’ population. These populations are consid-
ered in the line shape calculations (Eq. [5]) through p,,
(see below).

With the formalism stated above, Eq. [9] can be
written separately for each different species (A, B, ..),
with the addition of an exchange term, which couples
all the equations together (20):

O g9+ S (i)

- PBASf/j-(t)) + %Sfﬁ(t) [10]

where P, is the rate of exchange between species A
to B and so forth. This set of equations can be written
in a compact form by using the appropriate superop-
erators
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0% . (1) A
= Q=i+ BT, (0)

[11]

where 9’+ is an operator, which represents all the
exchanging species (see below). The superoperator 2
corresponds to the operator [, i (0,Hin Eq. [10] for
the entire N exchanging species (with the dimension
of ON X 9N). The superoperators I and R are related
to the exchange and the relaxation processes, respec-
tively, and are described below. Equation [11] has the
formal solution

P = expli(Q + 1+ R) )P, [12]
With this solution, one can continue and follow the
approach of Hudson and McLachlan (20), which re-
lies on the extensive treatment of Kubo and Tomita
(26), and Alexander (15, 27) to write Eq. [5] for the
line shape intensity / versus o, for a given DC field as

I(w) =2 Im Tl"{ poy+[(ﬂ - — l(ﬁ + 9j\i):|80+}

[13]

where p, is the density matrix operator describing all
the species (detailed below). In the original treatment
(20), p, describes the thermal triplet population. How-
ever, in the general case it should account for the
possibility of a spin-polarized triplet.

We now proceed from the general theoretical
introduction to the main part of this article, which
presents a hands-on approach to the line shape
simulation problem. To solve Eq. [13], one should
describe explicitly the matrix form of €, IT and R.
These matrices provide the denominator of Eq.
[13], which can then be obtained through a numer-
ical matrix inversion. The inverted matrix is then
multiplied by the supervectors, representing ¥ i
and p,, to obtain the line shape relative intensity at
frequency w. First, one must determine the vector
basis set, by which the supervectors and superma-
trices are represented. To simplify the problem, we
diagonalize the full Hamiltonian by using a stan-
dard procedure in which first D and E are neglected
(they are usually at least ~10 times smaller than the
Zeeman interaction, for X-band measurements) to
obtain the eigenvectors from the high-field wave

EI 1 . 1 + n 1/2 /7 TS 1 1 —n 1/2 |1 =
SU—im| 2= (1+zm>1+
S, | = — 21— im) n 12 (1 + im) 0> [14]
1 ) 1—n]"? = 12 1+n
s, E(l_”")m —V/Z(l—n) (l+zm) — |—1>
Following this, D and E are accounted for as a first- matrix (28):
order perturbation, to obtain the diagonal Hamiltonian
b - -
——1=-3)+=(P—m)+ w, 0 0
6 2
D
H= 0 3 (1—13n%) — EP—m 0
D E
0 0 — e (1=30) + 5 (P =) —

[15]




where [ = sinf cosd; m = sinb sind; and n = cos6,
for the spatial angle 6, ¢, which describe the direction
of B, with respect to the molecular Z axis (Fig. 2[a]),
and w, = gBB,. Thus, as expected, the three energy
levels depend on the molecular orientation in the
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external magnetic field, resulting in a broad inhomo-
geneous spectrum for isotropically distributed molec-
ular orientations. To explicitly describe ) (the su-
permatrix form of €), we write in detail how this
operator operates on a general matrix v.

H?l 0 0 Vii Vi Vi3 Vir Vi Vis Hl?l 0 0
QY =[Hv]=%y — v =| 0 Hy 0 ||vy vy V| —|vy vp vu|| 0 H) 0
0 0 H?z V31 Vo Va3 V31 Vi Va3 0 0 H§‘3
H?lvll H?1v12 H?lvlz H?ﬂ’n H§2v12 H§‘3V13
= H?2v21 ngvzz H?zvzz H?1V21 ngvzz H§3V23
H?3V31 H?3V32 H§\3V33 H/?lv31 ngvzz H?3V33
0 (H?l - H?z)vlz (HI:‘I - H§3)V13
= | (H}, — H)vy 0 (HY, — H33)vp [16]
(H?z - H?I)VSI (H?,z - Héz)vzz 0
Thus, the commutator can be represented in a su-
permatrix form as
) 0 0 0 0 0 0 0 07,
0 HY,— H 0 0 0 0 0 0 0 (v,
0 0 H), — HY, 0 0 0 0 0 0 (v
0 0 0 H} —HY, 0 0 0 0 0 |[vy
Qv =[%"v]=| 0 0 0 0 0 0 0 0 0 |vyy
0 0 0 0 0 H% — Hi 0 0 0 vy
0 0 0 0 0 0 Hj, — HY, 0 0 vy
0 0 0 0 0 0 0 Hi — Hy 0 |va
L0 0 0 0 0 0 0 0 0 dvs;d

If the Hamiltonian (Eq. [15]) was not diagonal, the
resulting supermatrix would have been much more com-
plicated, but the same formalism would still be valid.
The supermatrix Q* in Eq. [17] is for one species only,
the total supermatrix € is with dimension of 9N X 9N,
where the supermatrices Q*®- are on the diagonal of
the large banded ) supermatrix.

Q0 0 v
0 08 0 B
Q=| o o ac [yl 08

The banded form of € is due to the assumption that
each Hamiltonian acts on each species separately,
without mutual interaction (apart for the exchange,
which is considered separately). Equations [17] and
[18] show the explicit representation of the operator
Q in Eq. [13], which is used below to obtain the
numerical solution.

The supermatrix Il can also be written in an
explicit from. For example, consider the case of a
system with three sites, exchanging between them-
selves with rates denoted by P,, P»y, Py3, P, Pa3,
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B,

\4

o —around Z

B—around Y’

y —around 2"’

Figure 2 (a) Coordinate system used in this article. The XYZ axes represent the triplet’s molecular
frame of reference and B, is the direction of the external magnetic field with respect to this axes
system. (b) Euler angles used to represent molecular change of orientation (i.e., exchange between
two species or rotation). Starting from the system XYZ, a rotation by angle « around the Z axis
results in the system X’Y’Z (dashed). Consequently, a rotation by an angle 3 around the new Y’ axis
results in the system X”Y’Z” (dotted). Finally a rotation by an angle y around the new Z” axis

results in the system X’Y*Z” (dashed dotted).

and P,. In this case, the exchange superoperator I1
is written as

R _P12_PI3 P, P31
II = P, =P, — Py P,
Py Py —P3; — Py,
[19]
PIZ_P13_ - Py P,
R P12 _le_P23_"‘P2N
II = Pi; Py
Py Py

Here the overall size of the supermatrix Il is 9N X
9N. This matrix will be employed in the numerical
solution of Eq. [13] (see below).

The relaxation superoperator thl- is related in our
treatment only to the spin-spin relaxation time T;
(of species i), while T, is taken into account
through p, (in Eq. [5]). The general expression for

Here, each term in this matrix represents a diagonal
9 X 9 matrix, and the overall size of the superma-
trix TI is a 27 X 27, which affects all the spin
matrix components of the three species. Equation
[19] can be generalized to the case of N interacting
species:

P, Py,

P Py,
_P31_P32_"'P3N PN3

Piy _PNl_PNz_"'PN(N—l)

[20]

T5;, for a specific molecular orientation (described
by m,n,l), can be obtained by means of the anis-
tropic values of Ty, T5;y, and Ty, at the canonical
orientations (4)

T2i,[,m,n = T2[xl2 + T2[ym2 + TZiznz' [21]



Because 7, mechanisms act only on the transverse
magnetization, the supermatrix R; is constructed such

0 0 0 0
0 Ulyim. O 0
0 0 UTyymn O
0 0 0 Ty
R,=[0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

The full supermatrix R may take into account differ-
ent relaxation rates for the different species and is
constructed from the individual Bi' Thus, for exam-
ple, in the case of three species, R has dimensions of
27 X 27 and can be represented by

R) O 0
ﬁ=<0 (R,) 0) [23]
0 0 (Ry)

This expression can be generalized to the case of N
interacting species. Again, the R matrix is used below
in the explicit numerical solution of Eq. [13].

The final issue to be addressed before calculating
the line shape with Eq. [13] is the supervector py;,
which represents the triplet level’s population of spe-
cies i. The individuals p; are later used to obtain py,
which accounts for the energy levels’ population of all
species. Although in general, p,; contains nine differ-
ent elements for each triplet species, in the case of
CW detection, only matrix elements, which corre-
spond to the coherence generated between levels 1
and 2 of the triplet and levels 2 and 3 of the triplet
(under high magnetic field), are important for the line
shape calculation (5). Thus, for the case of thermal
triplets, po; can be taken as:

010
pu=[0 0 1) [24]

0 00

which means that the population difference between
levels 1 and 2 is (almost) equal to the population
difference between levels 2 and 3. For photoexcited
triplets, with spin polarization, the population differ-
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that only the off-diagonal elements of &', are
affected:

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 [22]
0 UTy,n, O 0 0
0 0 UTyymn O 0
0 0 0 Ty O
0 0 0 0 0

ence between the levels is far from being equal. In this
case, one can determine p, from the information
about the selective levels’ population of the triplet’s
principle levels, A,, Ay, A, for each of the species (6,
29). Due to the origin of the spin polarization, the
triplet levels’ population depends on the orientation of
the molecule with respect to the external magnetic
field. To properly account for this effect, we first
examine the population difference of the two allowed
EPR transitions in the three canonical orientations.
We also consider the decay of the triplet levels’ pop-
ulation to thermal equilibrium following the laser
pulse that generates the polarized triplets (6). For
example, in a situation where the triplet’s molecular X
axis is parallel to the magnetic field, the population
difference, corresponding to the two EPR transitions
for species i, will be (6, 29)

Al = (—al + Be M+ Ay(1 — ™M) [25]
AL = (ol + Be M+ A, (1 —e ) [26]

where the parameters o’ and B’ of species i are
obtained through simple expression from Al A;, Al
(29); T',, is the spin lattice relaxation (SLR) time of
the triplet for the X canonical orientation, and A, is
the thermal equilibrium population difference. (Thus,
the thermal population case is obtained for t — o°.)
Similarly, A;l, A?z, A’,, and A!, can be calculated for
the other canonical orientations. The population dif-
ferences in the canonical orientations are used to
obtain the population difference in any arbitrary ori-
entation, which is described by the parameters /,m,n
(see Fig. 2), using the expressions (4)
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This formalism can be performed for each of the
species separately, thus allowing for the consideration
of different population rates for each species. The
population difference between the levels is used for
the construction of p;:

0 A;,m,nZ O
Poi = 0 0 A;,m,nl [29]
0 0 0

This matrix may be different for each of the species
and can be incorporated to construct the full p, su-
pervector:

pO = (0 AIl,m,nZ 0 0 0 AIl,m,nl O 0 O O
Al 0.0 0 Aj,,, 0 0 0---) [30]

Lm,n2
Where we “broke” the p,; matrix into a supervector
form and then cascaded all the vectors to a single
supervector. This super vector will be used in the
numerical solution of Eq. [13].

Having explicitly calculated and presented all the
relevant supermatrices and supervectors appearing in

Eq. [13], one can numerically invert the supermatrix
in the denominator of Eq. [13] and obtain the line
shape /(w) for any given w and molecular orientation
([, m, n). The final line shape is obtained by the
numerical integration of I(w) over all the possible
molecular orientations:

Imml(w) _ f f P(e’ d))](w’ 0, d))dd)de [31]
0 ¢

where P(0,d) is the distribution function of the mo-
lecular orientations. For example, in the case of iso-
tropic solvents, P(8,b). In the case of anisotropic
solvents (e.g., liquid crystals, LCs), the distribution
function is usually more complicated (4, 14).

APPLICATIONS AND EXAMPLES
The theory discussed above was implemented in a short

“Matlab” routine (see Appendix), which calculates the
triplet EPR line shape in many cases of interest. We now



28 BLANK AND LEVANON

100 . T

a0+

60

4" arb. scale
[ o |
fi

-100} =

-120 '

I I
280 290 300 310 320

330 340 350 360 370

Magnetic Field, [mT]

Figure 7 Calculated triplet EPR line shape for polarized triplet (A, = A, = 1; A, = 0) with
parameters D = 30 mT; E = 5 mT; 1/T,, = 1/T,, = 1/T,, = 1 mT. The triplet molecule undergoes
rotation around the molecular Z axis with increasing rate. The rotation is modeled as an exchange
between two species with relative Euler angles (a,3,y) = (90,0,0) and exchange rate P, . Positive
sign corresponds to absorption signal; negative sign corresponds to emission signal. [Color figure
can be viewed in the online issue, which is available at www.interscience.wiley.com.]

describe several examples of these theoretical calcula-
tions, ranging from simple to complex cases.

We begin by looking at a “synthetic example” of a
single species in thermal equilibrium, where the mag-
netic field is positioned along the X or Z axis of the
triplet molecule (Fig. 3). This case results in a simple
single crystal-like spectrum, where the distance be-
tween the two peaks in the Z-axis orientation equals
2D, as expected (7).

In the next example, we still consider only single
species and assume an isotropic solvent where the line
shape is the summation of all randomly distributed
triplet molecules (Fig. 4). The resulting line shape is
the well-known Pake doublet (1, 30).

Next, we consider the case of a spin polarized
triplet (single species), where the ZFS parameters D,
E # 0 (Fig. 5[a]). The emission/absorption pattern
obtained in this case is typical to D > 0, with the
population of the triplet X and Y levels considered
here (/4). Note also that the spectrum is not com-
pletely antisymmetric, due to the net emissive polar-
ization of the triplet (as expected for this selective
population scheme (24)). Figure 5(b) shows the same
spectrum, but for the case of anisotropic relaxation

rates T,. Note that the relatively long 7, for B || Z
causes the edges of the spectrum to become sharper.

From synthetic calculations we turn to simulations
of actual measured spectra. Here we return to the
spectrum showed earlier in Fig. 1. It presents the line
shape of a triplet gallium-pentafluorophenylcorrole
(Ga(tpfc)) in toluene. This is a unique example where
the ZFS parameter D is negative as a result of molec-
ular distortion and head-to-tail spin alignment (3, 37).

The next example is of an anisotropic solvent. Aniso-
tropic environments are common in many biological and
liquid crystalline systems (32). As mentioned earlier, the
specific nature of the solvent (isotropic/anisotropic) is
considered in the line shape calculation through the
distribution function in Eq. [31]. The exact nature of this
function depends on the specific properties of the sol-
vent. Thus, the distribution of the molecular orientation
in the laboratory frame of reference (Eq. [31]) is derived
by first describing the distribution function of the mol-
ecules in the LCs frame of reference and then translating
it to the distribution in the laboratory frame of reference.
Figure 6 shows a line shape pattern typical for anisotro-
pic distribution of planar triplet molecules in LC envi-
ronment (/4, 33).



As discussed above, molecular rotation can be ac-
counted in the simulation by considering two or more
exchanging species. As a first example, we calculate the
spectrum of a triplet with the same parameters as in Fig.
5(a), which rotates around the molecular Z axis. This
rotation is simulated as an exchange process between
two species with different Hamiltonians (in this case,
differing only by the relative orientation of the triplet
with respect to B). The relation between the orientations
of the two species can be described by means of the
Euler angles. A common definition of the Euler angles is
shown in Fig. 2(b). Thus, for example, rotation around
the molecular Z axis can be described by the Euler
angles (o,3,y) = (90,0,0), where the rate of exchange
between the species (the parameter P,z in Eq. [10])
provides the rotational correlation time for such rotation
through the relation

2
T = [32]

] 'TTPAB

Therefore, if one considers a 90° “jump” process, at
exchange rate P,p, it corresponds to molecular rota-
tion at a rate of m/2 X P,p radians/s. The spectrum,
originating from such rotation for several values of
P,p, 1s shown in Fig. 7. It is evident that such rotation
effectively averages out the E value.

Next, we consider a more complicated 3D rotation, as
encountered in triplet Cy in fluid phases (/3, 33). This
spectrum can be simulated by examining three exchang-
ing species related to each other by the Euler angles
(90,90,0) and (0,90,90). Combining together these three
species is equivalent to an isotropic rotation. Figure 8
presents the simulated results, compared with results
obtained through the rotational diffusion model (73).
The rigid limit and the motional narrowed spectrum give
similar results with the two methods. For the slow rota-
tion case, shown in Fig. 8(a) (central spectrum), there is
a slight disagreement between the results of the two

Figure 8 Calculated EPR line shape for photoexcited trip-
let C¢, employing the rotational diffusion model (solid line;
borrowed with permission from (/3)), and the model pre-
sented here (dashed line). Calculation parameters D = 11.4
mT; E = 0.69 mT; A, = Ay =0;A,=1, 1T, =02 mT.
(a) Rotational diffusion calculation for slow rotation rate of
R =10° 107, 10® s~ from top to bottom respectively, and
exchange rate between the three sites of P,z = Ppoc =
Pue =33 X 10°, 3.3 X 10, 3.3 X 107 from top to bottom
respectively. (b) The same as (a) but for faster motion with
R =10 10", 10" s~' and P,z = Poc = Pge = 3.3 X
108, 3.3 X 10%, 3.3 X 10'° s~ from top to bottom respec-
tively. Positive sign corresponds to absorption signal while
negative sign corresponds to emission signal.
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methods. This is because the slow rotation spectrum
cannot be described accurately as 90° jumps and should
be considered through smaller discrete jumps. This im-
plies that more than three exchanging species are re-
quired to accurately account for such conditions. One
can qualitatively describe this requirement for increased
number of exchanging species in an analogous manner
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Figure 9 Simulated (upper trace) and measured (lower trace) triplet EPR line shape for photo-
excited H,TPP in toluene (Prof. S. Yamauchi, unpublished results). (a) Results for 25 K, A, = 1;
A, =03;A, =0.3;D =404 mT; E = 8 mT, no molecular rotation. (b) Results for 300 K, the same
parameters as in (a) but with molecular rotation simulated by three orthogonal exchanging species
(as in the Cg, case), with exchange rate of Py = Poc = Pgc = 5 X 107 s7 %,

to the requirement of increased number of basis sets or
finite difference divisions when solving similar prob-
lems (the stochastic Liouville equation) by means of the
eigen value and the finite difference methods (34). In
most cases, three species are enough to represent 3D
rotations, but for slow rotations or more involved angu-
lar dependence of the Hamiltonian, one may require
additional species to better simulate the experimental
spectrum.

In the next example we consider a more complicated
case, where the triplet molecule has two conformers
undergoing interconversion and also rotates in solid or
fluid solutions. Such cases occur, for example, for the
photoexcited triplet state of boron subphthalocyanine
chloride (35). The two molecular conformers have sim-
ilar D but different E values. Using our present method,
we could account for different population rates, different
anisotropic relaxation rates, and even different rotation
rates for the two molecular conformers. The experimen-
tal and the simulated results were presented in details in
(35). The original discussion of these results (35) as-
sumed that the absorption Lorentzian-like line shape
appearing at high temperatures is mainly due to thermal
relaxation (SLR). Such explanation provided good fit to
the experimental results but does not account for emis-
sive spectra found under similar conditions in triplets
such as H,TPP and MgTPP (36). An alternative expla-
nation for the apparent thermalization of the spectrum is
through very fast rotations about all the molecular axes,
similar to the mechanism employed earlier for the Cg,
case (13). Such process can be treated by the present line
shape simulation, and it predicts a collapse of the triplet
spectrum to single Lorentzian line, which can be either
in absorption (as in the boron subphthalocyanine chlo-
ride case) or in emission (as in the case of the triplet of
free-base porphyrin, H,TPP (36)). Figure 9 shows typ-

ical simulated and measured results of H,TPP and a
collapse of the spectrum to a single Lorentzian line in
enhanced emission due to fast rotations.

CONCLUSIONS

We presented a general theory for the quantitative
analysis of triplet EPR line shapes. The theory can be
employed to extract from the experimental line shape
a wide variety of parameters related to the triplet
molecule. The theoretical basis for the line shape
analysis was reviewed in detail, and several examples
of calculated and measured results were provided.
These examples demonstrate the ability to investigate
cases such as triplets in solid solution with anisotropic
relaxation and population, rotating triplets in liquid,
exchange between different triplets, and a combina-
tion of exchange, rotation, and anisotropic relaxation
and triplet level’s population. A “Matlab” routine is
provided to facilitate easier understanding of the var-
ious numerical issues involved in the line shape cal-
culation and to enable simpler adoption of these the-
oretical tools by the readers.
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APPENDIX: “MATLAB” ROUTINE FOR LINE SHAPE SIMULATION

function [XXX, YYY]=triplet_line(c);
% Matlab Ver. 6.1 with Symbolic Toolbox
% This routine uses the +1 0 —1 wavefunctions
% c is a vector containing the species parameters
% X, Y the simulated EPR spectrum
Np=200; % Number of points in the magnetic field calculation, a parameter.
% The structure of c is fitted to up to 4 species, but the program is
% generic to any number of species.
% Input example
if nargin==0,
% c(1,1) % sample rotation angle - related to LC, not implemented here
% c(1,2) % Sigma_theta(deg) - related to LC, not implemented here
% c(1,3) % Phi_0 (deg) - related to LC, not implemented here
% c(1,4) % Sigma phi_0 (deg) - related to LC, not implemented here
c(1,5)=—-316; % D (gauss), Site 1
c(1,6)=67.3; % E (gauss), Site 1
c(1,7)=100; % Percent, Site 1
% c(1,8) % D (gauss), Site 2
% c(1,9) % E (gauss), Site 2
% ¢(1,10) % Percent, Site 2
% c(1,11) % D (gauss), Site 3
% c(1,12) % E (gauss), Site 3
% c(1,13) % Percent, Site 3
% c(1,14) % D (gauss), Site 4
% c(1,15) % E (gauss), Site 4
% c(1,16) % Percent, Site 4
c(1,17)=0; % t/T1x, Site 1
c(1,18)=0; % t/Tly, Site 1
c(1,19)=0; % t/T1z, Site 1
% ¢(1,20) % t/T1x, Site 2
% c(1,21) % t/Tly, Site 2
% c(1,22) % t/T1z, Site 2
% c(1,23) % t/T1x, Site 3
% c(1,24) % t/Tly, Site 3
% c(1,25) % t/T1z, Site 3
% c(1,26) % t/T1x, Site 4
% c(1,27) % t/Tly, Site 4
% c(1,28) % t/T1z, Site 4
c(1,29)=4.6; % T2x, Site 1
c(1,30)=4.2; % T2y, Site 1
c(1,31)=2.6; % T2z, Site 1
% c(1,32) % T2x, Site 2
9% c(1,33) % T2y, Site 2
% c(1,34) % T2z, Site 2
% ¢(1,35) % T2x, Site 3
% ¢(1,36) % T2y, Site 3
% c(1,37) % T2z, Site 3
% c(1,38) % T2x, Site 4
% c(1,39) % T2y, Site 4
% c(1,40) % T2z, Site 4
% %c(1,41) % Kex, Site 1 - Redundant, not used here
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% %c(1,42) % Xr, Site 1 - Redundant, not used here
% %c(1,43) % Yr, Site 1 - Redundant, not used here
% %c(1,44) % Zr, Site 1 - Redundant, not used here
% %c(1,45) % Xit, Site 1 - Redundant, not used here
% %c(1,46) % Yit, Site 1 - Redundant, not used here
% %c(1,47) % Zit, Site 1 - Redundant, not used here
% c(1,48) % Kex, Site 2

% c(1,49) % Xr, Site 2 - Euler angle alpha

% ¢(1,50) % Yr, Site 2 - Euler angle beta

% c(1,51) % Zr, Site 2 - Euler angle gamma

% c(1,52) % Xit, Site 2 - distribution around Euler angle, not used here
% c(1,53) % Yit, Site 2 - distribution around Euler angle, not used here
% c(1,54) % Zit, Site 2 - distribution around Euler angle, not used here
% c(1,55) % Kex, Site 3

% ¢(1,56) % Xr, Site 3

% c(1,57) % Yr, Site 3

% c(1,58) % Zr, Site 3

% c(1,59) % Xit, Site 3

% c(1,60) % Yit, Site 3

% c(1,61) % Zit, Site 3

% ¢(1,62) % Kex, Site 4

% ¢(1,63) % Xr, Site 4

% c(1,64) % Yr, Site 4

% c(1,65) % Zr, Site 4

% c(1,66) % Xit, Site 4

% c(1,67) % Yit, Site 4

% c(1,68) % Zit, Site 4

c(1,69)=0.64; % Ax, Site 1

c(1,70)=0.47; % Ay, Site 1

c(1,71)=0; % Az, Site 1

% c(1,72) % Ax, Site 2

% c(1,73) % Ay, Site 2

% c(1,74) % Az, Site 2

% c(1,75) % Ax, Site 3

% c(1,76) % Ay, Site 3

% c(1,77) % Az, Site 3

% c(1,78) % Ax, Site 4

% c(1,79) % Ay, Site 4

% ¢(1,80) % Az, Site 4

c(1,81)=0; % Isotropic, Nematic, Smectic
¢(1,82)=2800; % Min field

c(1,83)=—100; % Min Y

¢(1,84)=4000; % Max field

c(1,85)=100; % Max Y

¢(1,86)=0; % Pixel movement

¢(1,87)=1; % Number of Sites

% c(1,88) % K11 % exchange matrix terms (P11=KI11 etc. . .)
% ¢(1,89) % K12

% ¢(1,90) % K13

% c(1,91) % K14

% ¢(1,92) % K21

% c(1,93) % K22

% c(1,94) % K23

% c(1,95) % K24
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% c(1,96) % K31

% c(1,97) % K32

% c(1,98) % K33

% c(1,99) % K34

% c(1,100) % K41

% c(1,101) % K42

% ¢(1,102) % K43

% ¢(1,103) % K44

c(1,104)=1; % Use (1) or don’t use (0) the exchange matrix

end;
Number_of_Sites=c(87);
i=sqrt(—1);

% Type of site gives me the Euler rotation angles between one site to the other,
% 1f alpha=beta=gama=0 then it means that it is the original site or that the site
% 1is different from the original site in D or E only.
syms W
for j=1:Number_of_Sites,
s=["syms Htemp’,num2str(j),” D’,num2str(j),” E’,num2str(j),” I’,num?2str(j),” m’,num?2str(j),” n’,num2str(j)];
eval(s);
s=["Htemp’ ,num2str(j),” =[—D’ ,num2str(j),”/6*(1 —3*n’ ,num2str(j),” 2)+E’,num?2str(j),”/
2%’ ,num2str(j),” 2—m’,num2str(j),” 2)+W W/lel0 W/1el0; W/lel0
D’,num2str(j),”/3*(1 —3*n’ ,num2str(j),” 2)—E’,num2str(j),”*(I’,num2str(j),” 2—m’,num2str(j),” 2)
W/1el0 ; W/1el0 W/1el0
—D’,num2str(j),”/6*(1 —3*n’ ,num2str(j),” 2)+E’,num?2str(j),”/
2%’ ,num2str(j),” 2—m’,num2str(j),” 2)—W]; ’J;
eval(s);
s=["H(j,:,:)=Htemp’,num2str(j)];
eval(s)
end;
% Creating Symbolic Density Matrices
for j=1:Number_of_Sites,

s=[’syms rou’,num?2str(j),” 11 rou’,num?2str(j),” 12 rou’,num?2str(j),” 13 rou’,num?2str(j),’21
rou’,num2str(j),’22 rou’,num2str(j),’23 rou’,num?2str(j),’31 rou’,num2str(j),’32 rou’ ,num?2str(j),”33’];
eval(s);

s=["rou’,num?2str(j),” =[rou’,num?2str(j),’11 rou’,num2str(j),’12 rou’,num2str(j),"’13 ; rou’,num2str(j),’21
rou’ ,num?2str(j),’22 rou’,num2str(j),’23 ; rou’,num2str(j),’31 rou’,num2str(j),’32 rou’,num?2str(j),”33]’];
eval(s);
end;
% Creating Omega Super Operator
i=sqrt(—1);
syms om
for j=1:Number_of_Sites,
Htemp(:,:)=H(,:,:);
s=[’om’,num2str(j),’ = —i*(Htemp*rou’,num2str(j),” —rou’,num2str(j),” *Htemp)’];
eval(s);
p=0;
for k1=1:3,
for k2=1:3
p=ptL
pl=0;
for k3=1:3,
for k4=1:3,
pl=pl+1;
s=["rou’,num?2str(j),” 11=0;"]; eval(s);
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s=["rou’,num?2str(j),” 12=0;]; eval(s);
s=["rou’,num?2str(j),” 13=0;]; eval(s);
s=["rou’,num?2str(j),’21=0;]; eval(s);
s=["rou’,num?2str(j),’22=0;]; eval(s);
s=["rou’,num?2str(j),’23=0;]; eval(s);
s=["rou’,num?2str(j),’31=0;]; eval(s);
s=["rou’,num?2str(j),’32=0;]; eval(s);
s=["rou’,num?2str(j),’33=0;]; eval(s);
s=["rou’ ,num?2str(j),num2str(k3),num2str(k4),” =1;’]; eval(s);
s=[E99=om’ ,num2str(j),”(’,num2str(k1),”,” ,num2str(k2),”);’]; eval(s);
E9=eval(E99);
s=Lom(G—1D*9+p,G—1)*9+p1)=E9;’]; eval(s);
end;
end;
end;
end;
end;
om=om/(—1);
W=(c(82)+c(84))/2; % Gauss, for magnetic field
for j=1:Number_of_Sites,
Type_of_Site(j,:)=[c(42+([{—1)*7) c(42+({G—1)*7+1) c(42+({G—1)*7+2) c(42+({—1)*7+3)
c(d2+(G—1)*7+4) c(42+(G—1)*7+5)];
s=[’'D’,num2str(j),"=c(5+(G—1)*3);’];
eval(s);
s=[’E’,num2str(j),” =c(6+(—1)*3);’];
eval(s);
D(j)=c(5+(—1)*3);
E(j)=c(6+(—1)*3);
NG)=c(7+(G—1)*3)/100;
T2x(G)=c(29+(j—1)*3);
T2y(j)=c(29+(G—1)*3+1);
T2z(G)=c(29+(—1)*3+2);
T1x(G)=c(17+G—1)*3);
Tly(G)=c(17+(G—1)*3+1);
T1z(G)=c(17+({—1)*3+2);
end;
K=zeros(Number_of_Sites,Number_of_Sites); % exchange rate matrix from site to site
if (c(104)==1),
for j=1:Number_of_Sites,
for k=1:Number_of Sites,

if (j~=k),
K(,k)=c(88+(j—1)*4+k—1);
end;
end;
end;
else,

for j=1:Number_of_Sites,
for k=1:Number_of_ Sites,

if (j~=k),
K@G.k)=c(@1+G—1)*7);
if (c(41+(G—1)*7)>0),

K(kj)=c(41+({—1)*7);

end;

end;



end;
end;
end;
for j=1:Number_of_Sites,
Ax(j)=c(69+(—1)*3);
Ay(G)=c(69+(—1)*3+1);
Az(j)=c(69+([G—1)*3+2);
end;
xsix=((D+E)/2/W+1)/2;
xsiy=((E—D)/2/W+1)/2;
xsiz=(E/W+1)/2;
alphat=Ax+Ay+Az;
alphax=(1—3*Ax./alphat)/2;
alphay=(1—3*Ay./alphat)/2;
alphaz=(1—3*Az./alphat)/2;
alphax1=(1—2*alphax)/3;
alphayl=(1—2*alphay)/3;
alphaz1=(1—2%alphaz)/3;
for j=1:Number_of_Sites,
alphamax(j)=max([alphax1(j) alphayl(j) alphaz1(j)]);
end;
alphax1=alphax1./alphamax;
alphayl =alphay1./alphamax;
alphazl=alphazl./alphamax;
alphat=alphax1+alphayl +alphazl;
betax=(1—2%xsix).*(alphay1—alphazl)./alphat;
betay=(1—2%xsiy).*(alphazl —alphax1)./alphat;
betaz=(1—2%*xsiz).*(alphax1—alphay1)./alphat;
Thermal_Pop=0.0001;

Tx1=(—alphax+betax).*exp(—3*T1x)+Thermal_Pop*(1—exp(—3*T1x));
Tx2=(alphax+betax).*exp(—3*T1x)+Thermal_Pop*(1—exp(—3*T1x));
Tyl=(—alphay+betay).*exp(—3*T1y)+Thermal_Pop*(1—exp(—3*Tly));
Ty2=(alphay+betay).*exp(—3*T1ly)+Thermal_Pop*(1—exp(—3*Tly));
Tz1=(—alphaz+betaz/2).*exp(—3*T1z)+Thermal_Pop*(1 —exp(—3*T1z))
Tz2=(alphaz+betaz/2).*exp(—3*T1z)+Thermal_Pop*(1—exp(—3*T1z));

In=zeros(Np,1);
% super-matrix of exchange between sites
KS=zeros(Number_of_Sites*9,Number_of_Sites*9);
for j=1:Number_of_Sites,
for j1=1:Number_of_Sites,
for k=1:9,
if G==jD),
KS(G—1)*9+k,(j1—1)*9+k)=—sum(K(:,j));
else,
KS(G—1)*9+k,(j1—1)*9+k)=(K(,j1));
end;
end;
end;
end;
KS=-KS;
% SX super vector
JIx=1/sqrt(2)*[0 1 0;1 0 1; 0 1 0]; % Jx in 1 ,0, —1 basis
Jy=1/sqrt(2)*[0 =1 0;1 0 —i; 01 0]; % Jy in 1,0, —1 basis
Jz=[100;000,00 —1]; % Jz in 1,0 ,—1 basis
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Sx=[000;00 —i;010];
Sx=Jx;
Sp=Jx+sqrt(—1)*Jy;
% isotropic case
if (c(81)==0),
h9 = waitbar(0,’Please wait. . .");
for Theta=0.001:0.02:pi/2, % Loop on Theta. This is the numerical integration parameter
waitbar(Theta/1.57,h9);
for Phi=0.001:0.02:pi/2, % Loop on Phi. This is the numerical integration parameter
% Hamiltonian for Z axis facing molecule, ZIIBO
%Creating The Sites Hamiltonian
11=(sin(Theta)*cos(Phi));
m1=(sin(Theta)*sin(Phi));
nl=(cos(Theta));
TT11=evalCTx1(1)*11 2+Tyl(1)*ml 2+Tz1(1)*nl 2’);
TT12=evalCTx2(1)*11 2+Ty2(1)*ml 2+Tz2(1)*nl 2’);
for j=2:Number_of_Sites,
% Euler Rotation
Reuler=euler(Type_of_Site(j,1),Type_of_Site(j,2),Type_of_Site(j,3));
s=["atemp=Reuler*[l1 ; ml ; nl];’];
eval(s);
s=["I’,num2str(j),” =atemp(1); m’,num2str(j),” =atemp(2); n’,num2str(j),” =atemp(3);’];
eval(s);
s=["TT ,num2str(j),” 1 =eval("Tx1(,num2str(j),”)*1’,num2str(j),” 2+Tyl(,num2str(j),”)*m’,num?2str(j),’
2+Tz1(’ ,num2str(j),”)*n’ ,num?2str(j),” 27);’];
eval(s);
s=["TT’ ,num2str(j),"2=eval("Tx2( ,num2str(j),”)*1’,num2str(j),” 2+Ty2(,num2str(j),”)*m’,num?2str(j),’
2+Tz2(’ ,num?2str(j),”)*n’ ,num?2str(j),” 27);’];
eval(s)
end;
% T2 Relaxation Super Operator
ind_mat=eye(Number_of_Sites*9);
T2_mat=zeros(Number_of_Sites*9,Number_of_Sites*9);
for j=1:Number_of_Sites,
s=["T2_real=I",num2str(j),” 2*T2x(j)+m’,num2str(j),” 2*T2y(j)+n’,num2str(j),” 2¥T2z(j);’];
eval(s);
T2_mat(G—1)*9+2,(j—1)*9+2)=T2_real;
T2_mat(G—1)*9+3,(—1)*9+3)=T2_real;
T2_mat(G—1)*9+4,(j—1)*9+4)=T2_real;
T2_mat((G—1)*9+6,(j—1)*9+6)=T2_real;
T2_mat(G—1)*9+7,(—1)*9+7)=T2_real;
T2_mat((G—1)*9+8,(j—1)*9+8)=T2_real;
end;
SX=zeros(Number_of_Sites*9,1);
for j=1:Number_of_Sites,
pp=0;
for j1=1:3,
for j2=1:3,
pp=pp+1;
SX((G—D*9+pp,1)=Sp(j1,j2);
end;
end;
end;
% Creating Omega Super Operator



om99=eval(om);
% Semi - Equilibrium rou
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rou0=zeros(Number_of_Sites*9,Number_of_Sites*9);

for j=1:Number_of_Sites,
kq=0;
for j1=1:3,
for j2=1:3,
kq=kq+1;

s=[rou0(G—1)*9+2,G—1)*9+2)=TT’ ,num?2str(j),”2*N(’,num?2str(j),’);’];

eval(s)

s=[rou0(G—1)*9+6,G—1)*9+6)=TT’ ,num?2str(j),” 1 *N(’,num?2str(j),’);’];

eval(s)
end;
end;
end;

% distribution function calculation for isotropic case

dist_funct=sin(Theta);
pq=0;

for FW=c(82):(c(84)—c(82))/(Np—1):c(84); % Gauss, for changing frequency of microwave irradiation

pa=pq+1;

Q=(0om99—FW*ind_mat)—i*(KS+T2_mat);

In(pq)=In(pq)+dist_funct*(2*imag(trace(rou0*SX*(Q (—1)*SX).”)));

end;
end;
end;
close(h9);
end;
XXX=c(82):(c(84)—c(82))/(Np—1):c(84);
YYY=In;
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